Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Putting the squeeze on nitrogen for high energy materials

05.09.2008
Nitrogen atoms like to travel in pairs, hooked together by one of the strongest chemical bonds in nature. By subjecting nitrogen molecules to extreme temperatures and pressures scientists are getting a new understanding of not only nitrogen but other similar molecules, including hydrogen.

In the current online edition of Physical Review Letters, researchers from the Carnegie Institution's Geophysical Laboratory report changes in the melting temperature of solid nitrogen at pressures up to 120 gigapascals (more than a million atmospheres) and temperatures reaching 2,500° Kelvin (more than 4000° Fahrenheit).

These results, plus observed changes in the structure of solid nitrogen at high pressures, could lead to new high energy nitrogen- or hydrogen-based fuels in the future. Hypothesized nitrogen polymers could form materials with higher energy content than any known non-nuclear material.

Alexander Goncharov, Viktor Struzhkin, and Russell Hemley from Carnegie, with Jonathan Crowhurst from Lawrence Livermore National Laboratory, compressed liquid nitrogen in a device known as a diamond anvil cell, which generates ultrahigh pressures by squeezing a sample between two gem-quality diamonds. Because the diamonds are transparent to most wavelengths of light, the sample can be heated by a laser during the experiment. A technique called Raman spectroscopy uses light emitted by the heated sample to analyze changes in the sample's molecular structure as they occur.

"Until now, no one had made these kinds of in situ observations of nitrogen at such extreme temperatures and pressures," says Goncharov. "Our measurements of the melting line and the vibration properties of the fluid indicated by the Raman spectroscopy give us a very clear picture of how nitrogen and its molecular bonds respond under these conditions."

A chart of the temperatures and pressures at which a substance changes from one phase to another (from liquid to gas, from one crystal structure to another, and so on) is called a phase diagram. For nitrogen, as well as most other materials, the high temperature and pressure regions of the phase diagram are relatively unexplored territories. Researchers hope that these unexplored regions may harbor new materials with useful properties.

At room temperature and atmospheric pressure, nitrogen is a gas, but it can be cooled and compressed to form a liquid or a solid, depending on the temperature and pressure. Even as it changes phases, however, the nitrogen remains a two atom (diatomic) molecule, held together by a strong—and energy rich—triple bond.

"Nitrogen compounds tend to be high energy density materials," says Goncharov. "Pure nitrogen can be a powerful fuel or explosive if one can figure out how to associate nitrogen atoms in a material other than as a triple-bonded diatomic molecule. Recent experiments have shown that nitrogen transforms to nonmolecular single-bonded phases at very high pressure. These could serve as high energy density materials if preserved on a return to ambient pressure. Our results will help show the way to synthesize these materials at less extreme conditions."

Filling the gaps in nitrogen's phase diagram has implications for the study of other critical materials, say Goncharov. "Nitrogen is an archetypal diatomic molecule. Knowledge of its phase diagram and other properties gives a hint about the behavior of other diatomics, among which is hydrogen. Many key transformations and other phenomena occur in nitrogen at much lower pressures than in hydrogen," he says. "Hydrogen is a fuel for the future. It is theorized to have fascinating properties under high pressure, including transformation to metallic, superconducting and superfluid states. Whether the materials with such properties can be recovered and stabilized at ambient pressure remains an open question. But with nitrogen, we are moving ahead quickly. "

Alexander Goncharov | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>