Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsars: The Universe's gift to physics

21.02.2012
Unique cosmic 'laboratories' yielding otherwise-unavailable insights

Pulsars, superdense neutron stars, are perhaps the most extraordinary physics laboratories in the Universe. Research on these extreme and exotic objects already has produced two Nobel Prizes. Pulsar researchers now are poised to learn otherwise-unavailable details of nuclear physics, to test General Relativity in conditions of extremely strong gravity, and to directly detect gravitational waves with a "telescope" nearly the size of our Galaxy.

Neutron stars are the remnants of massive stars that exploded as supernovae. They pack more than the mass of the Sun into a sphere no larger than a medium-sized city, making them the densest objects in the Universe, except for black holes, for which the concept of density is theoretically irrelevant. Pulsars are neutron stars that emit beams of radio waves outward from the poles of their magnetic fields. When their rotation spins a beam across the Earth, radio telescopes detect that as a "pulse" of radio waves.

By precisely measuring the timing of such pulses, astronomers can use pulsars for unique "experiments" at the frontiers of modern physics. Three scientists presented the results of such work, and the promise of future discoveries, at the American Association for the Advancement of Science meeting in Vancouver, British Columbia.

Pulsars are at the forefront of research on gravity. Albert Einstein published his theory of General Relativity in 1916, and his description of the nature of gravity has, so far, withstood numerous experimental tests. However, there are competing theories.

"Many of these alternate theories do just as good a job as General Relativity of predicting behavior within our Solar System. One area where they differ, though, is in the extremely dense environment of a neutron star," said Ingrid Stairs, of the University of British Columbia.

In some of the alternate theories, gravity's behavior should vary based on the internal structure of the neutron star.

"By carefully timing pulsar pulses, we can precisely measure the properties of the neutron stars. Several sets of observations have shown that pulsars' motions are not dependent on their structure, so General Relativity is safe so far," Stairs explained.

Recent research on pulsars in binary-star systems with other neutron stars, and, in one case, with another pulsar, offer the best tests yet of General Relativity in very strong gravity. The precision of such measurements is expected to get even better in the future, Stairs said.

Another prediction of General Relativity is that motions of masses in the Universe should cause disturbances of space-time in the form of gravitational waves. Such waves have yet to be directly detected, but study of pulsars in binary-star systems have given indirect evidence for their existence. That work won a Nobel Prize in 1993.

Now, astronomers are using pulsars throughout our Milky Way Galaxy as a giant scientific instrument to directly detect gravitational waves.

"Pulsars are such extremely precise timepieces that we can use them to detect gravitational waves in a frequency range to which no other experiment will be sensitive," said Benjamin Stappers, of the University of Manchester in the UK.

By carefully timing the pulses from pulsars widely scattered within our Galaxy, the astronomers hope to measure slight variations caused by the passage of the gravitational waves. The scientists hope such Pulsar Timing Arrays can detect gravitational waves caused by the motions of supermassive pairs of black holes in the early Universe, cosmic strings, and possibly from other exotic events in the first few seconds after the Big Bang.

"At the moment, we can only place limits on the existence of the very low-frequency waves we're seeking, but planned expansion and new telescopes will, we hope, result in a direct detection within the next decade," Stappers said.

With densities as much as several times greater than that in atomic nuclei, pulsars are unique laboratories for nuclear physics. Details of the physics of such dense objects are unknown.

"By measuring the masses of neutron stars, we can put constraints on their internal physics," said Scott Ransom of the National Radio Astronomy Observatory. "Just in the past three to four years, we've found several massive neutron stars that, because of their large masses, rule out some exotic proposals for what's going on at the centers of neutron stars," Ransom said.

The work is ongoing, and more measurements are needed. "Theorists are clever, so when we provide new data, they tweak their exotic models to fit what we've found," Ransom said.

Pulsars were discovered in 1967 and that discovery earned the Nobel Prize in 1974.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | EurekAlert!
Further information:
http://ww.nrao.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>