Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsars: The Universe's gift to physics

21.02.2012
Unique cosmic 'laboratories' yielding otherwise-unavailable insights

Pulsars, superdense neutron stars, are perhaps the most extraordinary physics laboratories in the Universe. Research on these extreme and exotic objects already has produced two Nobel Prizes. Pulsar researchers now are poised to learn otherwise-unavailable details of nuclear physics, to test General Relativity in conditions of extremely strong gravity, and to directly detect gravitational waves with a "telescope" nearly the size of our Galaxy.

Neutron stars are the remnants of massive stars that exploded as supernovae. They pack more than the mass of the Sun into a sphere no larger than a medium-sized city, making them the densest objects in the Universe, except for black holes, for which the concept of density is theoretically irrelevant. Pulsars are neutron stars that emit beams of radio waves outward from the poles of their magnetic fields. When their rotation spins a beam across the Earth, radio telescopes detect that as a "pulse" of radio waves.

By precisely measuring the timing of such pulses, astronomers can use pulsars for unique "experiments" at the frontiers of modern physics. Three scientists presented the results of such work, and the promise of future discoveries, at the American Association for the Advancement of Science meeting in Vancouver, British Columbia.

Pulsars are at the forefront of research on gravity. Albert Einstein published his theory of General Relativity in 1916, and his description of the nature of gravity has, so far, withstood numerous experimental tests. However, there are competing theories.

"Many of these alternate theories do just as good a job as General Relativity of predicting behavior within our Solar System. One area where they differ, though, is in the extremely dense environment of a neutron star," said Ingrid Stairs, of the University of British Columbia.

In some of the alternate theories, gravity's behavior should vary based on the internal structure of the neutron star.

"By carefully timing pulsar pulses, we can precisely measure the properties of the neutron stars. Several sets of observations have shown that pulsars' motions are not dependent on their structure, so General Relativity is safe so far," Stairs explained.

Recent research on pulsars in binary-star systems with other neutron stars, and, in one case, with another pulsar, offer the best tests yet of General Relativity in very strong gravity. The precision of such measurements is expected to get even better in the future, Stairs said.

Another prediction of General Relativity is that motions of masses in the Universe should cause disturbances of space-time in the form of gravitational waves. Such waves have yet to be directly detected, but study of pulsars in binary-star systems have given indirect evidence for their existence. That work won a Nobel Prize in 1993.

Now, astronomers are using pulsars throughout our Milky Way Galaxy as a giant scientific instrument to directly detect gravitational waves.

"Pulsars are such extremely precise timepieces that we can use them to detect gravitational waves in a frequency range to which no other experiment will be sensitive," said Benjamin Stappers, of the University of Manchester in the UK.

By carefully timing the pulses from pulsars widely scattered within our Galaxy, the astronomers hope to measure slight variations caused by the passage of the gravitational waves. The scientists hope such Pulsar Timing Arrays can detect gravitational waves caused by the motions of supermassive pairs of black holes in the early Universe, cosmic strings, and possibly from other exotic events in the first few seconds after the Big Bang.

"At the moment, we can only place limits on the existence of the very low-frequency waves we're seeking, but planned expansion and new telescopes will, we hope, result in a direct detection within the next decade," Stappers said.

With densities as much as several times greater than that in atomic nuclei, pulsars are unique laboratories for nuclear physics. Details of the physics of such dense objects are unknown.

"By measuring the masses of neutron stars, we can put constraints on their internal physics," said Scott Ransom of the National Radio Astronomy Observatory. "Just in the past three to four years, we've found several massive neutron stars that, because of their large masses, rule out some exotic proposals for what's going on at the centers of neutron stars," Ransom said.

The work is ongoing, and more measurements are needed. "Theorists are clever, so when we provide new data, they tweak their exotic models to fit what we've found," Ransom said.

Pulsars were discovered in 1967 and that discovery earned the Nobel Prize in 1974.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | EurekAlert!
Further information:
http://ww.nrao.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>