Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


PS3s Help Astrophysicists Solve Black Hole Mystery

Using only the computing power of 16 Sony Playstation 3 gaming consoles, scientists at The University of Alabama in Huntsville and the University of Massachusetts, Dartmouth, have solved a mystery about the speed at which vibrating black holes stop vibrating.

It may be the first time this kind of research has been conducted exclusively on a PS3 cluster: A related 2007 UMass Dartmouth/UAHuntsville project using a smaller PS3 cluster also used a "traditional" supercomputer to run its simulations.

The biggest advantage of the console cluster — the PS3 Gravity Grid — at UMass Dartmouth was the cost saving, said Dr. Lior Burko, an assistant physics professor at UAHuntsville. "If we had rented computing time from a supercomputer center it would have cost us about $5,000 to run our simulation one time. For this project we ran our simulation several dozens of times to test different parameters and circumstances, so you can see how much that would have cost us.

"You can build a cluster like this for perhaps $6,000, and then you can run the simulation as many times as you like at no additional cost."

"Science budgets have been significantly dropping over the last decade," said UMass Dartmount Physics Professor Gaurav Khanna, who built the PS3 cluster. "Here's a way that people can do science projects less expensively."

Khanna recently launched a website which includes step-by-step instructions for building a supercomputing PS3 cluster.

The PS3 cluster was well suited to this type of astrophysical research, which requires a large number of mathematical calculations but has low demands for RAM memory, Burko said. "Not every kind of job would be suitable for that system, but it is exactly the kind of computation that we did."

The current price for supercomputing time through a center like the National Science Foundation's TeraGrid or the Alabama Supercomputing Center is about $1 per CPU hour. Each PS3 has a powerful Cell processor. The 16-unit PS3 grid can complete a 5,000-CPU-hour (and $5,000) simulation run in about a day. That is a speed comparable to a rented supercomputer.

Published in the journal, "Classical and Quantum Gravity," the new research resolved a dispute over the speed at which black holes stop vibrating after they first form or are perturbed by something like swallowing some matter.

"Think of a bell," said Burko. "A bell rings, but eventually it gets quiet. The energy that goes out with the sound waves is energy that the bell is losing. A black hole does exactly that in gravitational waves instead of sound waves. A black hole that is wobbling is emitting gravitational waves. When those vibrations die down you get a quiet black hole."

(Most black holes are "quiet," which means the only things astronomers can measure are their mass and how fast they spin.)

Khanna and Burko used a high resolution computer simulation to "perturb" a simulated spinning black hole, then watched as it returned to its quiet state. They found that the speed at which black holes go quiet was the faster of the two competing theories.

John Hoey | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>