Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Protecting Cocoon of the Solar System: NASA Mission discovers unexpected structures

16.10.2009
RUB astrophysicist with two publications in Science

The solar wind engulves our solar system like a cocoon: This continuous plasma flow that emanates from the Sun is protecting us from the interstellar medium, especially from the cosmic rays. The boundary of this cocoon is a long-standing topic of space research.

Now the NASA spacecraft IBEX (Interstellar Boundary Explorer) has, for the first time, detected energetic hydrogen atoms from this region resulting in a surprise: The measurements indicate entirely unexpected structures in the flux of these particles.

"All scientists have, so far, modelled this outer boundary without an interstellar magnetic field - nobody has expected its strong influence", states PD Dr. Horst Fichtner (Institut für Theoretische Physik IV der RUB). He and his international colleagues present these observations and new improved models of this cocoon in two publications in Science.

Electron exchange at the boundary of the heliosphere

The IBEX spacecraft, launched in October last year into Earth orbit, has pointed its novel detectors away from Earth into outer space and records how many energetic hydrogen atoms arrive per time interval from a given direction. Step by step it has scanned the whole sky and provided the first all-sky map of this particle flux, which allows to infer the physical conditions at the outer boundary of our solar system: At the outer edge of the heliosphere - the plasma cocoon - the solar wind plasma interacts with the interstellar medium. The solar wind consists partly of fast protons, the interstellar medium to a large fraction of slow hydrogen atoms. There is a specific probability that close encounters result in a transfer of an electron from the slow hydrogen atom to the fast proton. "Thereby, the two particles exchange their roles", explains Dr. Fichtner, "the fast proton transforms into a fast hydrogen atom and vice versa. We can measure the result of this transformation."

Modelling without the interstellar magnetic field

The all-sky map measured by IBEX surprised the scientists, however. It showed only partly the theoretically predicted structures, which were obtained under the assumption that the flux of energetic atoms is mainly determined by the solar wind and not by the interstellar magnetic field. Instead an intensity ribbon - resulting from relatively many exchange processes - showed up that stretches "diagonally" across the all-sky map. "Meanwhile, we know why", explains Horst Fichtner. "This ribbon fits to the interstellar magnetic field. The latter has been neglected in the models so far."

New scenarios

In the second Science publication the researchers now develop scenarios to explain the newly observed data. "We assume that the magnetic field plays a dynamic role leading to a compression of the heliosphere at its boundary", says Fichtner. The magnetic field forces the plasma flow from the Sun to decelerate resulting in an accumulation of particles. Thereby, the probability for "collisions" and, hence, that for electron transfer increase.

Waiting for further measurements

"These first results of the IBEX mission are a milestone on the way to a deeper understanding of the heliosphere and its galactic environment, which also determines the conditions for life on Earth.", comments Horst Fichtner, who heads a heliospheric research group. The detailed insights into the physics of the heliosphere can be transferred to other stars and help to understand the significance of astrospheres for extrasolar planets. The IBEX observations also show first indications for a time variability of the flux of neutral atoms and, thus, of the structure of the heliosphere: "Based on our models this is what we expect as a consequence of solar activity cycle", says Dr. Fichtner. The confirmation of such variation can, however, only result from measurements over a longer period. "The further measurements by IBEX, which will be operating for at least two years but, probably, far more, are eagerly expected!"

IBEX

IBEX is the latest in NASA's series of low-cost, rapidly developed Small Explorers space missions. Southwest Research Institute in San Antonio, TX, leads and developed the mission with a team of national and international partners. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the Explorers Program for NASA's Science Mission Directorate in Washington.

Titles

N. A. Schwadron, M. Bzowski, G. B. Crew, M. Gruntman, H. Fahr, H. Fichtner, P. C. Frisch, H. O. Funsten, S. Fuselier, J. Heerikhuisen, V. Izmodenov, H. Kucharek, M. Lee, G. Livadiotis, D. J. McComas, E. Moebius, T. Moore, J. Mukherjee, N. V. Pogorelov, C. Prested, D. Reisenfeld, E. Roelof, and G. P. Zank: Comparison of Interstellar Boundary Explorer Observations with 3-D Global Heliospheric Models. In: Science Express, Published online October 15 2009; 10.1126/science.1180986 (Science Express Reports)

D. J. McComas, F. Allegrini, P. Bochsler, M. Bzowski, E. R. Christian, G. B. Crew, R. DeMajistre, H. Fahr, H. Fichtner, P. C. Frisch, H. O. Funsten, S. A. Fuselier, G. Gloeckler, M. Gruntman, J. Heerikhuisen, V. Izmodenov, P. Janzen, P. Knappenberger, S. Krimigis, H. Kucharek, M. Lee, G. Livadiotis, S. Livi, R. J. MacDowall, D. Mitchell, E. Mobius, T. Moore, N. V. Pogorelov, D. Reisenfeld, E. Roelof, L. Saul, N. A. Schwadron, P. W. Valek, R. Vanderspek, P. Wurz, and G. P. Zank: Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX), In: Science Express, Published online October 15 2009; DOI: 10.1126/science.1180906 (Science Express Reports)

Further Information

PD Dr. Horst Fichtner, Institut für Theoretische Physik der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-23786, E-Mail: hf@tp4.rub.de

Dr. Josef König | idw
Further information:
http://ibex.swri.edu/
http://www.pm.ruhr-uni-bochum.de/pm2009/msg00229.htm

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>