Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Protecting Cocoon of the Solar System: NASA Mission discovers unexpected structures

16.10.2009
RUB astrophysicist with two publications in Science

The solar wind engulves our solar system like a cocoon: This continuous plasma flow that emanates from the Sun is protecting us from the interstellar medium, especially from the cosmic rays. The boundary of this cocoon is a long-standing topic of space research.

Now the NASA spacecraft IBEX (Interstellar Boundary Explorer) has, for the first time, detected energetic hydrogen atoms from this region resulting in a surprise: The measurements indicate entirely unexpected structures in the flux of these particles.

"All scientists have, so far, modelled this outer boundary without an interstellar magnetic field - nobody has expected its strong influence", states PD Dr. Horst Fichtner (Institut für Theoretische Physik IV der RUB). He and his international colleagues present these observations and new improved models of this cocoon in two publications in Science.

Electron exchange at the boundary of the heliosphere

The IBEX spacecraft, launched in October last year into Earth orbit, has pointed its novel detectors away from Earth into outer space and records how many energetic hydrogen atoms arrive per time interval from a given direction. Step by step it has scanned the whole sky and provided the first all-sky map of this particle flux, which allows to infer the physical conditions at the outer boundary of our solar system: At the outer edge of the heliosphere - the plasma cocoon - the solar wind plasma interacts with the interstellar medium. The solar wind consists partly of fast protons, the interstellar medium to a large fraction of slow hydrogen atoms. There is a specific probability that close encounters result in a transfer of an electron from the slow hydrogen atom to the fast proton. "Thereby, the two particles exchange their roles", explains Dr. Fichtner, "the fast proton transforms into a fast hydrogen atom and vice versa. We can measure the result of this transformation."

Modelling without the interstellar magnetic field

The all-sky map measured by IBEX surprised the scientists, however. It showed only partly the theoretically predicted structures, which were obtained under the assumption that the flux of energetic atoms is mainly determined by the solar wind and not by the interstellar magnetic field. Instead an intensity ribbon - resulting from relatively many exchange processes - showed up that stretches "diagonally" across the all-sky map. "Meanwhile, we know why", explains Horst Fichtner. "This ribbon fits to the interstellar magnetic field. The latter has been neglected in the models so far."

New scenarios

In the second Science publication the researchers now develop scenarios to explain the newly observed data. "We assume that the magnetic field plays a dynamic role leading to a compression of the heliosphere at its boundary", says Fichtner. The magnetic field forces the plasma flow from the Sun to decelerate resulting in an accumulation of particles. Thereby, the probability for "collisions" and, hence, that for electron transfer increase.

Waiting for further measurements

"These first results of the IBEX mission are a milestone on the way to a deeper understanding of the heliosphere and its galactic environment, which also determines the conditions for life on Earth.", comments Horst Fichtner, who heads a heliospheric research group. The detailed insights into the physics of the heliosphere can be transferred to other stars and help to understand the significance of astrospheres for extrasolar planets. The IBEX observations also show first indications for a time variability of the flux of neutral atoms and, thus, of the structure of the heliosphere: "Based on our models this is what we expect as a consequence of solar activity cycle", says Dr. Fichtner. The confirmation of such variation can, however, only result from measurements over a longer period. "The further measurements by IBEX, which will be operating for at least two years but, probably, far more, are eagerly expected!"

IBEX

IBEX is the latest in NASA's series of low-cost, rapidly developed Small Explorers space missions. Southwest Research Institute in San Antonio, TX, leads and developed the mission with a team of national and international partners. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the Explorers Program for NASA's Science Mission Directorate in Washington.

Titles

N. A. Schwadron, M. Bzowski, G. B. Crew, M. Gruntman, H. Fahr, H. Fichtner, P. C. Frisch, H. O. Funsten, S. Fuselier, J. Heerikhuisen, V. Izmodenov, H. Kucharek, M. Lee, G. Livadiotis, D. J. McComas, E. Moebius, T. Moore, J. Mukherjee, N. V. Pogorelov, C. Prested, D. Reisenfeld, E. Roelof, and G. P. Zank: Comparison of Interstellar Boundary Explorer Observations with 3-D Global Heliospheric Models. In: Science Express, Published online October 15 2009; 10.1126/science.1180986 (Science Express Reports)

D. J. McComas, F. Allegrini, P. Bochsler, M. Bzowski, E. R. Christian, G. B. Crew, R. DeMajistre, H. Fahr, H. Fichtner, P. C. Frisch, H. O. Funsten, S. A. Fuselier, G. Gloeckler, M. Gruntman, J. Heerikhuisen, V. Izmodenov, P. Janzen, P. Knappenberger, S. Krimigis, H. Kucharek, M. Lee, G. Livadiotis, S. Livi, R. J. MacDowall, D. Mitchell, E. Mobius, T. Moore, N. V. Pogorelov, D. Reisenfeld, E. Roelof, L. Saul, N. A. Schwadron, P. W. Valek, R. Vanderspek, P. Wurz, and G. P. Zank: Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX), In: Science Express, Published online October 15 2009; DOI: 10.1126/science.1180906 (Science Express Reports)

Further Information

PD Dr. Horst Fichtner, Institut für Theoretische Physik der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-23786, E-Mail: hf@tp4.rub.de

Dr. Josef König | idw
Further information:
http://ibex.swri.edu/
http://www.pm.ruhr-uni-bochum.de/pm2009/msg00229.htm

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>