Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


More proof that new planet and star are moving together

Researchers confirm imaged planet orbits around sun-like star in the Astrophysical Journal

A planet about eight times the mass of Jupiter has been confirmed to orbit a Sun-like star that's some 300 times farther from its own star than Earth is from its sun.

The newly confirmed planet is the least massive planet known to orbit at such a great distance from its host star.

The discovery, first reported in September 2008 (, was made using high-resolution adaptive optics technology at the Gemini Observatory. These latest results, published in the Astrophysical Journal, were led by David Lafrenière of the University of Montreal Department of Physics and a researcher at the Center for Research in Astrophysics of Quebec.

The suspected planetary system required further observations to confirm that the planet and star were indeed moving through space together. "Back in 2008 what we knew for sure was that there was this young planetary mass next to a young Sun-like star," says Lafrenière. The extreme proximity of the two objects strongly suggested that they were associated and not just aligned by chance.

"Our new observations rule out this chance alignment possibility, and thus confirms that the planet and the star are related to each other," says Lafrenière.

With its initial detection by the team using the Gemini Observatory in April of 2008 this object became the first likely planet known to orbit a sun-like star that was revealed by direct imaging. At the time of its discovery the team also obtained a spectrum of the planet and was able to determine many of its characteristics, which are confirmed in this new work.

"In retrospect, this makes our initial data the first spectrum of a confirmed exoplanet ever," says Lafrenière, adding the images show water vapor, carbon monoxide and molecular hydrogen in the planet's atmosphere.

David Lafrenière, along with René Doyon and Christian Marois, received the 2009 NSERC John C. Polanyi Award for capturing the first-ever image of a planetary system outside of our own solar system.

On the Web:

University of Montreal :
Cited article from Astrophysical Journal:

Olivier Hernandez | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>