Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Professors' super waterproof surfaces cause water to bounce like a ball

21.05.2014

Research on super-hydrophobic surfaces could result in cleaner, more efficient power

In a basement lab on BYU’s campus, mechanical engineering professor Julie Crockett analyzes water as it bounces like a ball and rolls down a ramp.


A droplet of water beads up on top of a hydrophobic surface. Water beads up even more on super-hydrophobic surfaces

This phenomenon occurs because Crockett and her colleague Dan Maynes have created a sloped channel that is super-hydrophobic, or a surface that is extremely difficult to wet. In layman’s terms, it’s the most extreme form of water proof.

Engineers like Crockett and Maynes have spent decades studying super-hydrophobic surfaces because of the plethora of real-life applications. And while some of this research has resulted in commercial products that keep shoes dry or prevent oil from building up on bolts, the duo of BYU professors are uncovering characteristics aimed at large-scale solutions for society.

Their recent study on the subject, published in academic journal Physics of Fluids, finds surfaces with a pattern of microscopic ridges or posts, combined with a hydrophobic coating, produces an even higher level of water resistance--depending on how the water hits the surface.

“Our research is geared toward helping to create the ideal super-hydrophobic surface,” Crockett said. “By characterizing the specific properties of these different surfaces, we can better pinpoint which types of surfaces are most advantageous for each application.”

Their work is critical because the growing list of applications for super-hydrophobic surfaces is extremely diverse:

  • Solar panels that don’t get dirty or can self-clean when water rolls off of them
  • Showers, tubs or toilets you don’t want hard water spots to mark
  • Bio-medical devices, such as the interior of tubes or syringes that deliver fluids to patients
  • Hulls of ships, exterior of torpedoes or submarines
  • Airplane wings that will resist wingtip icing in cold humid conditions

But where Crockett and Maynes’ research is really headed is toward cleaner and more efficient energy generation. Nearly every power plant across the country creates energy by burning coal or natural gas to create steam that expands and rotates a turbine. Once that has happened, the steam needs to be condensed back into a liquid state to be cycled back through.

If power plant condensers can be built with optimal super-hydrophobic surfaces, that process can be sped up in significant ways, saving time and lowering costs to generate power.

“If you have these surfaces, the fluid isn’t attracted to the condenser wall, and as soon as the steam starts condensing to a liquid, it just rolls right off,” Crockett said. “And so you can very, very quickly and efficiently condense a lot of gas.”

The super-hydrophobic surfaces the researchers are testing in the lab fall into one of two categories: surfaces with micro posts or surfaces with ribs and cavities one tenth the size of a human hair. (See images of each to the right.)

To create these micro-structured surfaces, the professors use a process similar to photo film development that etches patterns onto CD-sized wafers. The researchers then add a thin water-resistant film to the surfaces, such as Teflon, and use ultra-high-speed cameras to document the way water interacts when dropped, jetted or boiled on them.

They’re finding slight alterations in the width of the ribs and cavities, or the angles of the rib walls are significantly changing the water responses. All of this examination is providing a clearer picture of why super-hydrophobic surfaces do what they do.

“People know about these surfaces, but why they cause droplets or jets to behave the way they do is not particularly well known,” Crockett said. “If you don’t know why the phenomena are occurring, it may or may not actually be beneficial to you.”

Todd Hollingshead | Eurek Alert!
Further information:
http://news.byu.edu/archive14-may-superhydrophobic.aspx

Further reports about: alterations bounce cameras coating microscopic properties steam surfaces tubes

More articles from Physics and Astronomy:

nachricht Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser
05.02.2016 | Tohoku University

nachricht Scientists create new state of matter: Quantum gas, liquid and crystal all-in-one
02.02.2016 | Universität Stuttgart

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Ocean acidification makes coralline algae less robust

08.02.2016 | Earth Sciences

Online shopping might not be as green as we thought

08.02.2016 | Studies and Analyses

Proteomics and precision medicine

08.02.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>