Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful ancient explosions explain new class of supernovae

19.12.2013
Study by UCSB scientist finds they likely originate from the creation of magnetars

Astronomers affiliated with the Supernova Legacy Survey (SNLS) have discovered two of the brightest and most distant supernovae ever recorded, 10 billion light-years away and a hundred times more luminous than a normal supernova. Their findings appear in the Dec. 20 issue of the Astrophysical Journal.


A small portion of one of the fields from the Supernova Legacy Survey showing SNLS-06D4eu and its host galaxy (arrow). The supernova and its host galaxy are so far away that both are a tiny point of light that cannot be clearly differentiated in this image. The large, bright objects with spikes are stars in our own galaxy. Every other point of light is a distant galaxy.

Credit: UCSB

These newly discovered supernovae are especially puzzling because the mechanism that powers most of them — the collapse of a giant star to a black hole or normal neutron star — cannot explain their extreme luminosity. Discovered in 2006 and 2007, the supernovae were so unusual that astronomers initially could not figure out what they were or even determine their distances from Earth.

"At first, we had no idea what these things were, even whether they were supernovae or whether they were in our galaxy or a distant one," said lead author D. Andrew Howell, a staff scientist at Las Cumbres Observatory Global Telescope Network (LCOGT) and adjunct faculty at UC Santa Barbara. "I showed the observations at a conference, and everyone was baffled. Nobody guessed they were distant supernovae because it would have made the energies mind-bogglingly large. We thought it was impossible."

One of the newly discovered supernovae, named SNLS-06D4eu, is the most distant and possibly the most luminous member of an emerging class of explosions called superluminous supernovae. These new discoveries belong to a special subclass of superluminous supernovae that have no hydrogen.

The new study finds that the supernovae are likely powered by the creation of a magnetar, an extraordinarily magnetized neutron star spinning hundreds of times per second. Magnetars have the mass of the sun packed into a star the size of a city and have magnetic fields a hundred trillion times that of the Earth. While a handful of these superluminous supernovae have been seen since they were first announced in 2009, and the creation of a magnetar had been postulated as a possible energy source, the work of Howell and his colleagues is the first to match detailed observations to models of what such an explosion might look like.

Co-author Daniel Kasen from UC Berkeley and Lawrence Berkeley National Lab created models of the supernova that explained the data as the explosion of a star only a few times the size of the sun and rich in carbon and oxygen. The star likely was initially much bigger but apparently shed its outer layers long before exploding, leaving only a smallish, naked core.

"What may have made this star special was an extremely rapid rotation," Kasen said. "When it ultimately died, the collapsing core could have spun up a magnetar like a giant top. That enormous spin energy would then be unleashed in a magnetic fury."

Discovered as part of the SNLS — a five-year program based on observations at the Canada-France-Hawaii Telescope, the Very Large Telescope (VLT) and the Gemini and Keck telescopes to study thousands of supernovae — the two supernovae could not initially be properly identified nor could their exact locations be determined. It took subsequent observations of the faint host galaxy with the VLT in Chile for astronomers to determine the distance and energy of the explosions. Years of subsequent theoretical work were required to figure out how such an astounding energy could be produced.

The supernovae are so far away that the ultraviolet (UV) light emitted in the explosion was stretched out by the expansion of the universe until it was redshifted (increased in wavelength) into the part of the spectrum our eyes and telescopes on Earth can see. This explains why the astronomers were initially baffled by the observations; they had never seen a supernova so far into the UV before. This gave them a rare glimpse into the inner workings of these supernovae. Superluminous supernovae are so hot that the peak of their light output is in the UV part of the spectrum. But because UV light is blocked by the Earth's atmosphere, it had never been fully observed before.

The supernovae exploded when the universe was only 4 billion years old. "This happened before the sun even existed," Howell explained. "There was another star here that died and whose gas cloud formed the sun and Earth. Life evolved, the dinosaurs evolved and humans evolved and invented telescopes, which we were lucky to be pointing in the right place when the photons hit Earth after their 10-billion-year journey."

Such superluminous supernovae are rare, occurring perhaps once for every 10,000 normal supernovae. They seem to explode preferentially in more primitive galaxies — those with smaller quantities of elements heavier than hydrogen or helium — which were more common in the early universe.

"These are the dinosaurs of supernovae," Howell said. "They are all but extinct today, but they were more common in the early universe. Luckily we can use our telescopes to look back in time and study their fossil light. We hope to find many more of these kinds of supernovae with ongoing and future surveys."

Julie Cohen | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>