Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Post-mortem of a comet

01.06.2010
Scientists put the Comet Wild 2 under the microscope

Researchers at the University of Leicester are examining extraterrestrial material from a comet to assess the origins of our Solar System.

For the first time ever, material samples from a comet were collected in the Stardust Mission. It was the first mission since the Apollo landings to have successfully returned extraterrestrial material for scientists to study in the laboratory. At the University of Leicester's Space Research Centre and at Diamond Light Source, the UK's national synchrotron facility – a series of super microscopes – scientists are currently finding out what a comet is really made of.

The Stardust probe travelled 3.2 billion km in space, and flew through the coma of Comet Wild2 collecting tiny grains of dust, returning them back to Earth in 2006. They are being dissected at NASA and the University of California and being sent to a few laboratories around the world, with the University of Leicester being one of them.

By developing micro manipulation techniques, researchers at the University of Leicester have further dissected the tiny samples to study the comet to atomic precision under a Transmission Electron Microscope. This 'post-mortem' of Comet Wild2 has revealed for the first time the true composition of a comet.

Hitesh Changela, one of the researchers in the project, said:

"Understanding the true nature of comets may also help us to answer one of the fundamental questions in science - how the Solar System evolved in its early stages and how water and organics were delivered to the Earth. It's an exciting time when we can use new techniques to analyse the most distant Solar System bodies in our laboratories at Leicester."

Funding for Hitesh's PhD has been provided by the Science and Technology Facilities Council (STFC).

The researchers are obtaining unprecedented chemical information about the smallest grains of the comet, with sizes less than 1/10th the width of a human hair. The Diamond synchrotron is an electron particle accelerator that produces highly intense X-ray beams which can be used to delve deep into matter and materials to reveal information on the atomic and molecular scale. These X-rays were used to probe Stardust to the highest sensitivity.

Dr. John Bridges of the Space Research Centre at the University of Leicester is the principal investigator of this project. He commented:

"Comet Wild2 is a big analytical challenge as the total mass of samples is about 1 ten thousandth of a gram. By comparison the Apollo missions brought back 380 kg. The Microfocus Spectroscopy beamline at Diamond Light Source enabled us to examine these tiny particles and map the elements within them. These are exciting times in planetary science and once we have worked out what this comet is made of we can use these new techniques to study asteroids and the planets in unprecedented detail."

Using a globally unique technique at Diamond which enables the mapping of the widest range of elements, the group found X-ray signatures of iron oxides. Further research at Leicester has shown that the small grains of iron oxide contained in the Stardust samples may have formed by low temperature aqueous activity on Wild2. However, other grains formed at very high temperature – around 2000oC which is not what was expected from this icy comet that would have formed in the coldest, outermost reaches of the Solar System. This unexpected discovery has raised new questions about how these 'dustbins' of the early Solar System really formed.

This research is being presented to the public at the University of Leicester on June 24. The Festival of Postgraduate Research introduces employers and the public to the next generation of innovators and cutting-edge researchers, and gives postgraduate researchers the opportunity to explain the real world implications of their research to a wide ranging audience: http://www2.le.ac.uk/offices/ssds/sd/pgr/events/fpgr

Hitesh Changela | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>