Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientists achieves breakthrough in graphene research

11.10.2011
Researchers of The Hong Kong Polytechnic University (PolyU) have achieved further breakthrough in studying graphene on the nano-scale.

The study of graphene has become a hot topic after two scientists based in Manchester received the Nobel Prize in Physics for their ground-breaking research last year. More recently, researchers of The Hong Kong Polytechnic University (PolyU) have achieved further breakthrough in studying graphene on the nano-scale.

The latest study by Dr Feng Ding, Dr Hong Hu of PolyU and Professor Boris Yakobson of Rice University in the US have shown that even tiny strips of graphene – one-atom-thick sheets of carbon – can stand tall on a substrate with a little support of certain materials such as diamond or metal for binding strips of graphene nanoribbon. This opens the door of investigation for using arrays of graphene walls as ultra-high density components of electronic devices with a wide range of potential applications. This finding was published in the online edition of the Journal of the American Chemical Society.

According to Dr Ding and Dr Hu, who are now an Assistant Professor and Associate Professor respectively, of PolyU’s Institute of Textile and Clothing, graphene is the naturally synthesized thinnest fabric that owes both the highest flexibility and extreme strength (about 100 times stronger than steel). The exceptional electronic properties of graphene and its very high thermal conductivity make this material an ideal candidate for flexible and wearable electronic applications. It is expected to have a profound impact on future design of smart textiles and E-textiles.

The research has illustrated the differences between walls made of two distinct types of graphene nanoribbons, zigzag and armchair, so-called because of the way their edges are shaped. The nanoribbons would be able to stand easily at a 90-degree angle, and the walls could then be grown as close as 7/10ths of a nanometer. It is very surprising that these standing graphene preserve nearly all its intriguing electronic and magnetic properties and thus can be sued as freestanding ones. This research thus lays the groundwork for subnanometre electronic technology.

The work has paved the way for the study of graphene walls on a nano-scale with nearly all of their inherent electrical or magnetic properties retained. They estimated a theoretical potential of putting 100 trillion graphene wall field-effect transistors (FETs) on a single chip which merely measures square-inch. Their work would in effect extend the Moore’s Law by another 10 years.

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk/cpa/polyu/index.php?search=&press_section=&press_category=All&press_date=&mode=pressrelease&Itemid=223&option=c
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

New printing technique uses cells and molecules to recreate biological structures

20.02.2018 | Life Sciences

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>