Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientists achieves breakthrough in graphene research

11.10.2011
Researchers of The Hong Kong Polytechnic University (PolyU) have achieved further breakthrough in studying graphene on the nano-scale.

The study of graphene has become a hot topic after two scientists based in Manchester received the Nobel Prize in Physics for their ground-breaking research last year. More recently, researchers of The Hong Kong Polytechnic University (PolyU) have achieved further breakthrough in studying graphene on the nano-scale.

The latest study by Dr Feng Ding, Dr Hong Hu of PolyU and Professor Boris Yakobson of Rice University in the US have shown that even tiny strips of graphene – one-atom-thick sheets of carbon – can stand tall on a substrate with a little support of certain materials such as diamond or metal for binding strips of graphene nanoribbon. This opens the door of investigation for using arrays of graphene walls as ultra-high density components of electronic devices with a wide range of potential applications. This finding was published in the online edition of the Journal of the American Chemical Society.

According to Dr Ding and Dr Hu, who are now an Assistant Professor and Associate Professor respectively, of PolyU’s Institute of Textile and Clothing, graphene is the naturally synthesized thinnest fabric that owes both the highest flexibility and extreme strength (about 100 times stronger than steel). The exceptional electronic properties of graphene and its very high thermal conductivity make this material an ideal candidate for flexible and wearable electronic applications. It is expected to have a profound impact on future design of smart textiles and E-textiles.

The research has illustrated the differences between walls made of two distinct types of graphene nanoribbons, zigzag and armchair, so-called because of the way their edges are shaped. The nanoribbons would be able to stand easily at a 90-degree angle, and the walls could then be grown as close as 7/10ths of a nanometer. It is very surprising that these standing graphene preserve nearly all its intriguing electronic and magnetic properties and thus can be sued as freestanding ones. This research thus lays the groundwork for subnanometre electronic technology.

The work has paved the way for the study of graphene walls on a nano-scale with nearly all of their inherent electrical or magnetic properties retained. They estimated a theoretical potential of putting 100 trillion graphene wall field-effect transistors (FETs) on a single chip which merely measures square-inch. Their work would in effect extend the Moore’s Law by another 10 years.

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk/cpa/polyu/index.php?search=&press_section=&press_category=All&press_date=&mode=pressrelease&Itemid=223&option=c
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>