Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU scientists achieves breakthrough in graphene research

11.10.2011
Researchers of The Hong Kong Polytechnic University (PolyU) have achieved further breakthrough in studying graphene on the nano-scale.

The study of graphene has become a hot topic after two scientists based in Manchester received the Nobel Prize in Physics for their ground-breaking research last year. More recently, researchers of The Hong Kong Polytechnic University (PolyU) have achieved further breakthrough in studying graphene on the nano-scale.

The latest study by Dr Feng Ding, Dr Hong Hu of PolyU and Professor Boris Yakobson of Rice University in the US have shown that even tiny strips of graphene – one-atom-thick sheets of carbon – can stand tall on a substrate with a little support of certain materials such as diamond or metal for binding strips of graphene nanoribbon. This opens the door of investigation for using arrays of graphene walls as ultra-high density components of electronic devices with a wide range of potential applications. This finding was published in the online edition of the Journal of the American Chemical Society.

According to Dr Ding and Dr Hu, who are now an Assistant Professor and Associate Professor respectively, of PolyU’s Institute of Textile and Clothing, graphene is the naturally synthesized thinnest fabric that owes both the highest flexibility and extreme strength (about 100 times stronger than steel). The exceptional electronic properties of graphene and its very high thermal conductivity make this material an ideal candidate for flexible and wearable electronic applications. It is expected to have a profound impact on future design of smart textiles and E-textiles.

The research has illustrated the differences between walls made of two distinct types of graphene nanoribbons, zigzag and armchair, so-called because of the way their edges are shaped. The nanoribbons would be able to stand easily at a 90-degree angle, and the walls could then be grown as close as 7/10ths of a nanometer. It is very surprising that these standing graphene preserve nearly all its intriguing electronic and magnetic properties and thus can be sued as freestanding ones. This research thus lays the groundwork for subnanometre electronic technology.

The work has paved the way for the study of graphene walls on a nano-scale with nearly all of their inherent electrical or magnetic properties retained. They estimated a theoretical potential of putting 100 trillion graphene wall field-effect transistors (FETs) on a single chip which merely measures square-inch. Their work would in effect extend the Moore’s Law by another 10 years.

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk/cpa/polyu/index.php?search=&press_section=&press_category=All&press_date=&mode=pressrelease&Itemid=223&option=c
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>