Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plasmonics: A wave without diffraction

23.05.2013
Optical computing could benefit from the recent development of a novel electromagnetic wave
An unusual wave that does not spread out as it travels could become a key component in speedy computer chips that use beams of light to carry and process data. Jiao Lin, a physicist at the A*STAR Singapore Institute of Manufacturing Technology, helped to develop the electromagnetic wave, which can travel some
80 micrometers in a straight line without diffracting.

The wave is formed when light hits the surface of a metal, creating ripples in the sea of electrons there. Under certain conditions, the ripples — known as surface plasmons — can couple with the incoming light to create electromagnetic waves that stick tightly to the metal surface as they travel. Known as surface plasmon polaritons, these waves have a shorter wavelength than the light, which makes them more attractive as data carriers.

Although light can zip around a computer much faster than electrons, optical components tend to be much larger than those in conventional circuits — their size is dictated by the wavelength of the light they handle. Using surface plasmon polaritons offers the best of both worlds, explains Lin, because the signals can travel at the speed of light along metal waveguides that are as compact as conventional circuits. Unfortunately, surface plasmon polaritons diffract as they travel over the metal, which erodes the quality of the signals they carry. Previous attempts to prevent this diffraction were moderately successful, but caused the polaritons to veer off course.

The wave developed by Lin and co-workers is a previously unknown solution to Maxwell’s equations, which describe how electromagnetic fields behave. Once the team had formulated a mathematical description of this wave, known as a localized cosine-Gauss beam, Lin helped to turn it into a reality. The team carved two sets of tiny grooves, each roughly 10 micrometers long, into a thin layer of gold stuck to a glass backplate. They slightly angled the grooves to make a chevron pattern (see image).

Shining near-infrared laser light at the grooves generated two surface plasmon polaritons that soon converged and interfered constructively with each other. This resulted in a tightly focused beam that skimmed across the gold without diffracting, covering a much greater distance than previous efforts had achieved. The team tracked the narrow beam as it traveled over the surface using a near-field scanning optical microscope.

Lin says that as well as helping to create faster and more energy efficient computers, the beams could also be used in the laboratory to trap and manipulate nanoparticles.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Journal information

Lin, J., Dellinger, J., Genevet, P., Cluzel, B., de Fornel, F. & Capasso, F. Cosine-Gauss plasmon beam: A localized long-range nondiffracting surface wave. Physical Review Letters 109, 093904 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>