Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plasmonics: A wave without diffraction

Optical computing could benefit from the recent development of a novel electromagnetic wave
An unusual wave that does not spread out as it travels could become a key component in speedy computer chips that use beams of light to carry and process data. Jiao Lin, a physicist at the A*STAR Singapore Institute of Manufacturing Technology, helped to develop the electromagnetic wave, which can travel some
80 micrometers in a straight line without diffracting.

The wave is formed when light hits the surface of a metal, creating ripples in the sea of electrons there. Under certain conditions, the ripples — known as surface plasmons — can couple with the incoming light to create electromagnetic waves that stick tightly to the metal surface as they travel. Known as surface plasmon polaritons, these waves have a shorter wavelength than the light, which makes them more attractive as data carriers.

Although light can zip around a computer much faster than electrons, optical components tend to be much larger than those in conventional circuits — their size is dictated by the wavelength of the light they handle. Using surface plasmon polaritons offers the best of both worlds, explains Lin, because the signals can travel at the speed of light along metal waveguides that are as compact as conventional circuits. Unfortunately, surface plasmon polaritons diffract as they travel over the metal, which erodes the quality of the signals they carry. Previous attempts to prevent this diffraction were moderately successful, but caused the polaritons to veer off course.

The wave developed by Lin and co-workers is a previously unknown solution to Maxwell’s equations, which describe how electromagnetic fields behave. Once the team had formulated a mathematical description of this wave, known as a localized cosine-Gauss beam, Lin helped to turn it into a reality. The team carved two sets of tiny grooves, each roughly 10 micrometers long, into a thin layer of gold stuck to a glass backplate. They slightly angled the grooves to make a chevron pattern (see image).

Shining near-infrared laser light at the grooves generated two surface plasmon polaritons that soon converged and interfered constructively with each other. This resulted in a tightly focused beam that skimmed across the gold without diffracting, covering a much greater distance than previous efforts had achieved. The team tracked the narrow beam as it traveled over the surface using a near-field scanning optical microscope.

Lin says that as well as helping to create faster and more energy efficient computers, the beams could also be used in the laboratory to trap and manipulate nanoparticles.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Journal information

Lin, J., Dellinger, J., Genevet, P., Cluzel, B., de Fornel, F. & Capasso, F. Cosine-Gauss plasmon beam: A localized long-range nondiffracting surface wave. Physical Review Letters 109, 093904 (2012).

A*STAR Research | Research asia research news
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>