Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planck’s new map brings universe into focus

22.03.2013
The Planck space mission has today released the most accurate and detailed map ever made of the oldest light in the universe.
The universe according to Planck is expanding a bit more slowly than thought, and at 13.8 billion is 100 million years older than previously estimated. There is a bit less dark energy and a bit more of both normal and dark matter in the universe — although the nature of dark energy and dark matter remain mysterious.

The Planck Space Observatory

“Planck’s high-precision map of the oldest light in our universe allows us to extract the most refined values yet of the universe’s ingredients,” said Lloyd Knox, a physics professor at UC Davis and the leader of the U.S. team determining these ingredients from the Planck data. UC Davis graduate student Marius Millea and postdoctoral scholar Zhen Hou also worked with Knox on the analysis.

This May, UC Davis will host back-to-back conferences on “Mining the Cosmic Frontier in the Planck Era” (May 20-22) and “Fundamental Questions in Cosmology” (May 22-24). These will be the first major meetings in the U.S. for researchers to discuss the new data.

Planck is a European Space Agency mission with collaboration from NASA. It was launched in 2009 to a point almost a million miles from Earth where it can look into deep space and map tiny differences in the cosmic microwave background, the faint glow of radiation left over from just after the big bang.

For the first 370,000 years of the universe’s existence, light was trapped inside a hot plasma, unable to travel far without bouncing off electrons. Eventually the plasma cooled enough for light particles (photons) to escape, creating the patterns of the cosmic microwave background. The patterns of light represent the seeds of galaxies and clusters of galaxies we see around us today.

Then these photons traveled through space for billions of years, making their way past stars and galaxies, before falling into Planck’s detectors. The gravitational pull of both galaxies and clumps of dark matter pulls photons onto new courses, an effect called “gravitational lensing.”

“Our microwave background maps are now sufficiently sensitive that we can use them to infer a map of the dark matter that has gravitationally-lensed the microwave photons,” Knox said. “This is the first all-sky map of the large-scale mass distribution in the Universe.”

The Planck observatory has produced the most detailed map to date of mass distribution in the universe.

These new data from Planck have allowed scientists to test and improve the accuracy of the standard model of cosmology, which describes the age and contents of our universe.

Based on the new map, the Planck team estimates that the expansion rate of the universe, known as Hubble’s constant, is 67.15 plus or minus 1.2 kilometers/second/megaparsec. (A megaparsec is roughly 3 million light-years.) That’s less than prior estimates derived from space telescopes, such as NASA’s Spitzer and Hubble.

The new estimate of dark matter content in the universe is 26.8 percent, up from 24 percent, while dark energy falls to 68.3 percent, down from 71.4 percent. Normal matter now is 4.9 percent, up from 4.6 percent.

At the same time, some curious features are observed that don’t quite fit with the current model. For example, the model assumes the sky is the same everywhere, but the light patterns are asymmetrical on two halves of the sky, and there is larger-than-expected cold spot extending over a patch of sky.

“On one hand, we have a simple model that fits our observations extremely well, but on the other hand, we see some strange features which force us to rethink some of our basic assumptions,” said Jan Tauber, the European Space Agency’s Planck project scientist based in the Netherlands.

Scientists can also use the new map to test theories about cosmic inflation, a dramatic expansion of the universe that occurred immediately after its birth. In far less time than it takes to blink an eye, the universe blew up by 100 trillion trillion times in size. The new map, by showing that matter seems to be distributed randomly, suggests that random processes were at play in the very early universe on minute “quantum” scales. This allows scientists to rule out many complex inflation theories in favor of simple ones.

“Patterns over huge patches of sky tell us about what was happening on the tiniest of scales in the moments just after our universe was born,” said Charles Lawrence, the U.S. project scientist for Planck at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

Planck is the successor to balloon-based and space missions that helped astronomers learn a great deal from the microwave background, including NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) and the Cosmic Background Explorer (COBE), which earned the 2006 Nobel Prize in Physics. Complete results from Planck, which still is scanning the skies, will be released in 2014.

More information:

– NASA: http://www.nasa.gov/planck
– ESA: http://www.esa.int/Our_Activities/Space_Science/Planck

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu
http://blogs.ucdavis.edu/egghead/2013/03/21/plancks-new-map-brings-universe-into-focus/

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>