Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics in 3-D? That's nothing. Try 0-D

05.03.2014

Zero-dimensional quantum dots identified by University of Cincinnati researchers could someday have a big effect on a variety of technologies, such as solar energy, lasers and medical diagnostics.

In physics, there's small, and then there's nullity – as in zero-dimensional.


UC student Teng Shi will present her semiconductor nanowire research at the American Physical Society meeting.

University of Cincinnati researchers have reached this threshold with a special structure that may someday lead to better ways of harnessing solar energy, stronger lasers or more sensitive medical diagnostic devices.

These structures are semiconductor nanowires. UC doctoral student Teng Shi says she and a team of researchers have observed unique optical signatures indicating that electronic excitations within these nanowires can be confined to a zero-dimensional state called a "quantum dot."

This latest discovery is all about going small, but its significance is anything but. The research team’s ability to control the confinement energy by varying the size of the quantum dot opens up a world of possibilities.

"Exploring the basic physics of semiconductor nanowires enables one to envision applications or to design structures for applications," says Shi of UC's Department of Physics. "These structures are potential candidates for a variety of applications including photovoltaics, lasers and ultra-sensitive nanosensors."

Shi will present the team's research "Temperature-dependent Photoluminescence Imaging of GaAs/AlGaAs Heterostructure Quantum Well Tubes" at the American Physical Society (APS) meeting to be held March 3-7 in Denver. Nearly 10,000 professionals, scholars and students will attend the APS meeting to discuss new research from industry, universities and laboratories from around the world.

This research advances work previously done on semiconductor nanowires at UC. By using a thin shell called a quantum well tube and growing it – to about 4 nanometers thick – around the nanowire core, researchers found electrons within the nanowire were distributed in an unusual way in relation to the facets of the hexagonal tube. The result is a quantum wire, like a long string many times thinner than a human hair.

Now they've taken things even further, going from one-dimensional wires to zero-dimensional quantum dots. These little structures could have a big effect on a variety of technologies. Semiconductors are at the center of modern electronics. Computers, TVs and cellphones have them. They’re made from the crystalline form of elements that have scientifically beneficial electrical conductivity properties. Many semiconductors are made of silicon, but gallium arsenide is used in this research.

Additional contributors to this research are UC physics professors Howard Jackson and Leigh Smith in the McMicken College of Arts and Sciences; Jan Yarrison-Rice of Miami University; and Nian Jiang, Hoe Tan, Qiang Gao and Chennupati Jagadish of Australian National University.

The team at UC is one of only about a half dozen in the U.S. conducting competitive research in the field, and UC’s efforts in this area are partially funded by the National Science Foundation. The team's big achievements in the science of small support the UC2019 Academic Master Plan by producing new ways of understanding and transforming the world through research and scholarship.

Tom Robinette | EurekAlert!

Further reports about: 3-D APS Physics crystalline electrons nanowire structure structures

More articles from Physics and Astronomy:

nachricht Knots in chaotic waves
29.07.2016 | University of Bristol

nachricht International team of scientists unveils fundamental properties of spin Seebeck effect
29.07.2016 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>