Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Unveil New Kind of Superconductivity

25.10.2011
In this 100th anniversary year of the discovery of superconductivity, physicists at the University of Massachusetts Amherst and Sweden’s Royal Institute of Technology have published a fully self-consistent theory of the new kind of superconducting behavior, Type 1.5, this month in the journal Physical Review B.

In three recent papers, the authors report on their detailed investigations to show that a Type 1.5 superconducting state is indeed possible in a class of materials called multiband superconductors.


Egor Babaev
The superflow of two kinds of superconducting electrons (arrows show their velocities) as calculated on supercomputers. Graphic 1 shows the first kind of supercurrent forming vortices.
Physical Review B (October 2011)

For years, most physicists believed that superconductors must be either Type I or Type II. Type 1.5 superconductivity is the subject of intense debate because until now there was no theory to connect the physics with micro-scale properties of real materials, say Egor Babaev of UMass Amherst, currently a fellow at the technology institute in Stockholm, with Mikhail Silaev, a postdoctoral researcher there.

Their new papers now provide a theoretical framework to allow scientists to calculate conditions necessary for the appearance of Type 1.5 superconductivity, which exhibits characteristics of Types I and II previously thought to be antagonistic.

Superconductivity is a state where electric charge flows without resistance. In Type I and Type II, charge flow patterns are dramatically different. Type I, discovered in 1911, has two state-defining properties: Lack of electric resistance and the fact that it does not allow an external magnetic field to pass through it. When a magnetic field is applied to these materials, superconducting electrons produce a strong current on the surface which in turn produces a magnetic field in the opposite direction. Inside this type of superconductor, the external magnetic field and the field created by the surface flow of electrons add up to zero. That is, they cancel each other out.

Type II superconductivity was predicted to exist by a Russian theoretical physicist who said there should be superconducting materials where a complicated flow of superconducting electrons can happen deep in the interior. In Type II material, a magnetic field can gradually penetrate, carried by vortices like tiny electronic tornadoes, Babaev explains. The combined works that theoretically described Type I and II superconductivity won the Nobel Prize in 2003.

Classifying superconductors in this way turned out to be very robust: All superconducting materials discovered in the last half-century can be classified as either, Babaev says. But he believed a state must exist that does not fall into either camp: Type 1.5. By working out the theoretical bases for superconducting materials, he had predicted that in some materials, superconducting electrons could be classed as two competing types or subpopulations, one behaving like electrons in Type I material, the other behaving like electrons in a Type II material.

Babaev also said that Type 1.5 superconductors should form something like a super-regular Swiss cheese, with clusters of tightly packed vortex droplets of two kinds of electron: one type bunched together and a second type flowing on the surface of vortex clusters in a way similar to how electrons flow on the exterior of Type I superconductors. These vortex clusters are separated by “voids,” with no vortices, no currents and no magnetic field.

The major objection raised by skeptics, he recalls, is that fundamentally there is only one kind of electron, so it’s difficult to accept that two types of superconducting electron populations could exist with such dramatically different behaviors.

To answer this, Silaev and Babaev developed their theory to explain how real materials can give raise to Type-1.5 superconductivity, taking into account interactions at microscales. In a parallel effort, their colleagues at UMass Amherst and in Sweden including Johan Carlstrom and Julien Garaud, with Babaev, used supercomputers to perform large-scale numerical calculations modeling the behavior of superconducting electrons to better understand the structure of vortex clusters and what they look like in a Type-1.5 superconductor.

They found that under certain conditions they could describe new, additional forces at work between the Type-1.5 vortices, which can give vortex clusters very complicated structure. As more work is done on superconductivity, the team of physicists in Stockholm and at UMass Amherst say the family of multi-band superconducting materials will grow. They expect that some of the newly discovered materials will belong in Type 1.5.

“With the development of theory that works on the microscopic level, as well as our better understanding of inter-vortex interaction, we can now connect the properties of vortex clusters with the properties of electronic structure of concrete materials. This can be useful in establishing whether materials belong in the Type 1.5 superconductivity domain,” says Babaev.

Egor Babaev
413/241-7129
babaev1@physics.umass.edu

Egor Babaev | Newswise Science News
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>