Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physicists Unveil New Kind of Superconductivity

In this 100th anniversary year of the discovery of superconductivity, physicists at the University of Massachusetts Amherst and Sweden’s Royal Institute of Technology have published a fully self-consistent theory of the new kind of superconducting behavior, Type 1.5, this month in the journal Physical Review B.

In three recent papers, the authors report on their detailed investigations to show that a Type 1.5 superconducting state is indeed possible in a class of materials called multiband superconductors.

Egor Babaev
The superflow of two kinds of superconducting electrons (arrows show their velocities) as calculated on supercomputers. Graphic 1 shows the first kind of supercurrent forming vortices.
Physical Review B (October 2011)

For years, most physicists believed that superconductors must be either Type I or Type II. Type 1.5 superconductivity is the subject of intense debate because until now there was no theory to connect the physics with micro-scale properties of real materials, say Egor Babaev of UMass Amherst, currently a fellow at the technology institute in Stockholm, with Mikhail Silaev, a postdoctoral researcher there.

Their new papers now provide a theoretical framework to allow scientists to calculate conditions necessary for the appearance of Type 1.5 superconductivity, which exhibits characteristics of Types I and II previously thought to be antagonistic.

Superconductivity is a state where electric charge flows without resistance. In Type I and Type II, charge flow patterns are dramatically different. Type I, discovered in 1911, has two state-defining properties: Lack of electric resistance and the fact that it does not allow an external magnetic field to pass through it. When a magnetic field is applied to these materials, superconducting electrons produce a strong current on the surface which in turn produces a magnetic field in the opposite direction. Inside this type of superconductor, the external magnetic field and the field created by the surface flow of electrons add up to zero. That is, they cancel each other out.

Type II superconductivity was predicted to exist by a Russian theoretical physicist who said there should be superconducting materials where a complicated flow of superconducting electrons can happen deep in the interior. In Type II material, a magnetic field can gradually penetrate, carried by vortices like tiny electronic tornadoes, Babaev explains. The combined works that theoretically described Type I and II superconductivity won the Nobel Prize in 2003.

Classifying superconductors in this way turned out to be very robust: All superconducting materials discovered in the last half-century can be classified as either, Babaev says. But he believed a state must exist that does not fall into either camp: Type 1.5. By working out the theoretical bases for superconducting materials, he had predicted that in some materials, superconducting electrons could be classed as two competing types or subpopulations, one behaving like electrons in Type I material, the other behaving like electrons in a Type II material.

Babaev also said that Type 1.5 superconductors should form something like a super-regular Swiss cheese, with clusters of tightly packed vortex droplets of two kinds of electron: one type bunched together and a second type flowing on the surface of vortex clusters in a way similar to how electrons flow on the exterior of Type I superconductors. These vortex clusters are separated by “voids,” with no vortices, no currents and no magnetic field.

The major objection raised by skeptics, he recalls, is that fundamentally there is only one kind of electron, so it’s difficult to accept that two types of superconducting electron populations could exist with such dramatically different behaviors.

To answer this, Silaev and Babaev developed their theory to explain how real materials can give raise to Type-1.5 superconductivity, taking into account interactions at microscales. In a parallel effort, their colleagues at UMass Amherst and in Sweden including Johan Carlstrom and Julien Garaud, with Babaev, used supercomputers to perform large-scale numerical calculations modeling the behavior of superconducting electrons to better understand the structure of vortex clusters and what they look like in a Type-1.5 superconductor.

They found that under certain conditions they could describe new, additional forces at work between the Type-1.5 vortices, which can give vortex clusters very complicated structure. As more work is done on superconductivity, the team of physicists in Stockholm and at UMass Amherst say the family of multi-band superconducting materials will grow. They expect that some of the newly discovered materials will belong in Type 1.5.

“With the development of theory that works on the microscopic level, as well as our better understanding of inter-vortex interaction, we can now connect the properties of vortex clusters with the properties of electronic structure of concrete materials. This can be useful in establishing whether materials belong in the Type 1.5 superconductivity domain,” says Babaev.

Egor Babaev

Egor Babaev | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>