Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists at UC Santa Barbara make discovery in quantum mechanics

28.09.2009
Physicists at UC Santa Barbara have made an important advance in quantum mechanics using a superconducting electrical circuit. The finding is reported in this week's issue of the journal Nature.

The researchers showed that they could detect the quantum correlations in the results of measurements of entangled quantum bits, using a superconducting electrical circuit.

The correlations are stronger than can be obtained using classical (non-quantum mechanical) physics, and according to the physicists, this illustrates that the oddities of quantum mechanics clearly extend to macroscopic systems. The work is part of an ongoing collaboration between the UCSB laboratories of John Martinis and Andrew Cleland.

The results of measurements in quantum mechanics are intrinsically unpredictable, according to the theory of quantum mechanics, and yet still contain very strong correlations, in contradiction with classical physics. In particular, measurements of "entangled states," such as a pair of particles with opposite spins, allow stringent tests of the predicted discrepancy between quantum and classical physics, as described by the "Bell inequalities." Measuring such a discrepancy is known as a "Bell violation."

According to quantum theory, Bell violations should be detectable using "qubits," superconducting quantum bits, but measuring these violations is technologically challenging. Martinis, Cleland, and their colleagues have overcome these challenges, and report a clear violation of Bell's inequality with two entangled superconducting qubits. Thus, they have demonstrated that this macroscopic electrical circuit is a quantum system.

The measurement of a Bell violation in a superconducting circuit was recently stated to be the next primary challenge for the superconducting qubit community, according to Martinis.

Martinis said: "This experiment has met this challenge, achieved by performing a very demanding measurement on a pair of Josephson qubits, a measurement that requires excellent control over qubit state preparation, qubit entanglement, and very high fidelity single-shot state measurements of the entangled qubits. It directly proves that quantum mechanics is the only possible description for the behavior of a macroscopic electrical circuit."

Additional co-authors on the paper (all at UCSB at the time of the research) are: Markus Ansmann, Haohua Wang, Radoslaw C. Biaalczak, Max Hofheinz, Erik Lucero, Matthew Neeley, Aaron D. O'Connell, Daniel Sank, Martin Weides, and James Wenner.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

NASA team finds noxious ice cloud on saturn's moon titan

19.10.2017 | Physics and Astronomy

New procedure enables cultivation of human brain sections in the petri dish

19.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>