Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists at UC Santa Barbara make discovery in quantum mechanics

28.09.2009
Physicists at UC Santa Barbara have made an important advance in quantum mechanics using a superconducting electrical circuit. The finding is reported in this week's issue of the journal Nature.

The researchers showed that they could detect the quantum correlations in the results of measurements of entangled quantum bits, using a superconducting electrical circuit.

The correlations are stronger than can be obtained using classical (non-quantum mechanical) physics, and according to the physicists, this illustrates that the oddities of quantum mechanics clearly extend to macroscopic systems. The work is part of an ongoing collaboration between the UCSB laboratories of John Martinis and Andrew Cleland.

The results of measurements in quantum mechanics are intrinsically unpredictable, according to the theory of quantum mechanics, and yet still contain very strong correlations, in contradiction with classical physics. In particular, measurements of "entangled states," such as a pair of particles with opposite spins, allow stringent tests of the predicted discrepancy between quantum and classical physics, as described by the "Bell inequalities." Measuring such a discrepancy is known as a "Bell violation."

According to quantum theory, Bell violations should be detectable using "qubits," superconducting quantum bits, but measuring these violations is technologically challenging. Martinis, Cleland, and their colleagues have overcome these challenges, and report a clear violation of Bell's inequality with two entangled superconducting qubits. Thus, they have demonstrated that this macroscopic electrical circuit is a quantum system.

The measurement of a Bell violation in a superconducting circuit was recently stated to be the next primary challenge for the superconducting qubit community, according to Martinis.

Martinis said: "This experiment has met this challenge, achieved by performing a very demanding measurement on a pair of Josephson qubits, a measurement that requires excellent control over qubit state preparation, qubit entanglement, and very high fidelity single-shot state measurements of the entangled qubits. It directly proves that quantum mechanics is the only possible description for the behavior of a macroscopic electrical circuit."

Additional co-authors on the paper (all at UCSB at the time of the research) are: Markus Ansmann, Haohua Wang, Radoslaw C. Biaalczak, Max Hofheinz, Erik Lucero, Matthew Neeley, Aaron D. O'Connell, Daniel Sank, Martin Weides, and James Wenner.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>