Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists localize 3-D matter waves for first time

10.10.2011
University of Illinois physicists have experimentally demonstrated for the first time how three-dimensional conduction is affected by the defects that plague materials. Understanding these effects is important for many electronics applications.

Led by physics professor Brian DeMarco, the researchers achieved complete localization of quantum matter waves in three dimensions, first theorized roughly half a century ago. The group published its findings in the Oct. 7 issue of the journal Science.

Defects in materials are inevitable, but their effects are poorly understood. Understanding how disorder in a material affects waves traveling through it has implications for many applications, including ultrasonic waves in medical imaging, lasers for imaging and sensing, and electron waves for electronics and superconductors.

“The physics behind disorder is fundamental to understanding the impact of unavoidable material imperfections on these kinds of applications,” DeMarco said.

Scientists have long theorized, but never observed, that strong disorder causing interference on all sides can trap a matter wave in one place, a phenomenon known as Anderson localization. According to DeMarco, this is analogous to a trumpeter playing in a concert hall filled with randomly placed barriers that reflect sound waves. Instead of traveling in all directions, the sound stays at its source, never propagating outward because of destructive interference.

“The result? Perfect silence everywhere in the concert hall. The trumpeter blows into his instrument, but the sound never leaves the trumpet,” DeMarco said. “That’s exactly the case in our experiment, although we use quantum matter waves instead of sound, and the barriers are created using a speckled green laser beam.”

To simulate electrons moving in waves through a metal, DeMarco’s group uses ultra-cold atoms moving as matter waves in a disordered laser beam. Using laser light as an analogy for a material allows the researchers to completely characterize and control the disorder – a feat impossible in solids, which has made understanding and testing theories of Anderson localization difficult.

The researchers demonstrated that the laser light could completely localize the atoms – the first direct observation of three-dimensional Anderson localization of matter.

“This means that we can study Anderson localization in a way that is relevant to materials,” DeMarco said. “Now, theories of Anderson localization in 3-D can be compared to our ‘material’ and tested for the first time.”

The team also measured the energy a particle needs to escape localization, known as the mobility edge. Waves with energy higher than the mobility edge are free to propagate throughout the disorder, but waves with energy lower than the mobility edge are completely localized – even when there is a path through the barriers.

By tuning the power of the speckled green laser beam, the researchers measured the relationship between the mobility edge and disorder strength. They found that as disorder increased, so did the mobility edge, meaning that materials with high concentrations of defects induce more localization.

DeMarco hopes to use the quantum-matter analogues to better understand and manipulate materials.

Eventually, he plans to use his measurements of Anderson localization and the mobility edge along with future work exploring other parameters to engineer materials to better perform specific applications – in particular, high-temperature superconductors.

“Comparing measurements on a solid to theory are complicated by our lack of knowledge of the disorder in the solid and our inability to remove it,” DeMarco said. “But, that’s exactly what we can do with our experiment, and what makes it so powerful and exciting.”

The Defense Advanced Research Projects Agency, the Office of Naval Research and the National Science Foundation supported this work.

Editor’s notes: To reach Brian DeMarco, call 217-244-9848; email bdemarco@illinois.edu.

The paper, “Three-Dimensional Anderson Localization of Ultracold Matter,” is available online.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

nachricht Carbon nanotube optics provide optical-based quantum cryptography and quantum computing
19.06.2018 | DOE/Los Alamos National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>