Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists discover Crab nebula is slowly dimming

14.01.2011
Long thought to be the most stable source of high energy radiation in the sky, LSU scientists and an international team prove the Crab supernova remnant is flickering

The Crab Nebula, once considered to be a source of energy so stable that astronomers used it to calibrate their instruments, is dimming. LSU physicists Mike Cherry, Gary Case and graduate student James Rodi, together with an international team of colleagues using the Gamma-ray Burst Monitor, or GBM, on NASA's Fermi gamma-ray space telescope, discovered the anomaly. This revelation has proven astonishing for astronomers.

The Crab Nebula, one of the most studied objects in the sky, is the wreckage of a star that exploded in 1054. Considered a cornerstone of astronomical research, it even inspired its own unit of measurement, the "millicrab," which is used as a standard for measuring the intensity from other high-energy sources.

The GBM instrument was launched into orbit in summer 2008. This summer, the scientists were working on a catalog of the high energy X-ray and gamma ray signals detected mainly from sources in the galaxy powered by black holes and neutron stars. As they were preparing the catalog, which has been accepted for publication in the Astrophysical Journal, they realized that the intensity coming from the Crab Nebula was dimming.

"We were using the Crab as our calibration source and comparing the other high energy sources to it," said Case. "But as we collected more and more data, we noticed that the intensity we were measuring for the Crab was going down. This was a rather startling discovery, and it took awhile for us to believe it."

The initial suspicion was that the instrument was losing sensitivity. The team then gathered data from three other sensitive X-ray and gamma ray observatories currently in orbit – NASA's Swift and Rossi X-Ray Timing Explorer, or RXTE, and the European Space Agency's International Gamma-Ray Astrophysics Laboratory, or INTEGRAL. The result was that all four instruments were seeing the same decrease in intensity of about 7 percent since the summer of 2008.

"Nearly every other source of high energy radiation in the sky shows evidence of explosive, time-variable, transient activity. The Crab was the exception," said Cherry. "It was the only object that was bright enough and steady enough to serve as a 'standard candle.'"

Colleen Wilson-Hodge, an astrophysicist at NASA's Marshall Space Flight Center in Hunstville, Ala., recently presented the findings at the American Astronomical Society meeting in Seattle.

"Now, for the first time, we're clearly seeing how much our candle flickers," she said. The findings will be published in the Astrophysical Journal Letters.

Additional analysis showed that the Crab Nebula has brightened and dimmed several times since 1999 on approximately a three-year time scale. The current decrease is the largest so far observed, and the international team will continue to monitor the Crab Nebula to observe how much the decline continues.

The cause of the changes is not understood, but apparently involves changes in the magnetic fields close to the nebula's central neutron star. Because of this news, the scientists said that astronomers will now need to find new ways to calibrate their instruments in flight and to explore the possible effects of the inconstant Crab Nebula emissions on past findings.

About NASA's Fermi:

NASA's Fermi is an astrophysics and particle physics partnership managed by NASA's Goddard Space Flight Center in Greenbelt, Md., and developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States. For more information, visit www.nasa.gov/Fermi.

Contact Ashley Berthelot
LSU Media Relations
225-578-3870
aberth4@lsu.edu
Lynn Chandler
NASA's Goddard Space Flight Center
301-286-2806
lynn.chandler-1@nasa.gov

Ashley Berthelot | EurekAlert!
Further information:
http://www.lsu.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>