Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists detect low-level radioactivity from Japan arriving in Seattle

31.03.2011
University of Washington physicists are detecting radioactivity from Japanese nuclear reactors that have been in crisis since a mammoth March 11 earthquake, but the levels are far below what would pose a threat to human health.

On March 16, the scientists began testing air filters on the ventilation intake for the Physics-Astronomy Building on the UW campus, looking for evidence of dust particles containing radioactivity produced in nuclear fission.

The first positive results came from filters that were in place from noon on March 17 to 2 p.m. on March 18. Readings peaked three days later and then dropped, but have risen slightly since then.

"It's a faint signal. You have to filter a lot of air to see it," said Michael Miller, a UW research associate professor of physics. "We've definitely seen it fluctuate up and down, and we are correlating those peaks and drops with any changes in normal background radiation levels."

The measurements were begun because of concerns about effects of radioactivity on very sensitive physics experiments. They also document that radioactivity in airborne particles arriving in the United States is well within safety limits, said R.G. Hamish Robertson, a UW physics professor and director of the Center for Experimental Nuclear Physics and Astrophysics.

Using the air filters allowed sampling of 10 times more air than in methods used previously and proved to be a key in successfully detecting larger dust particles that had attracted radioactivity from the Japanese nuclear plants, Robertson said.

The readings allowed the physicists to make some detailed findings, including:

The presence of cesium isotopes in ratios that indicate the radioactivity was a result of fission in a nuclear reactor, not nuclear weapons.

The presence of relatively short-lived iodine 131 and tellurium isotopes, indicating the material came primarily from fuel rods, not spent fuel.

The absence of iodine 133, an isotope with an even shorter half-life than iodine 131, signaling that at least a week must have passed since the reactors were stopped.

"What that means is that they were successful in shutting down the reactors at the time of the earthquake," Robertson said. "The lack of iodine 133 indicates that the chain reaction was shut down."

The researchers speculate that, because they see only three of the many possible products of nuclear fission, the material that arrived in Seattle came from the evaporation of contaminated steam released from the reactors. Similar tests following the Chernobyl nuclear reactor meltdown in 1986 found a much broader spectrum of elements, indicating that material from actively burning fuel was being sent into the atmosphere.

While the radioactivity is arriving in the United States at levels far lower than are considered harmful to humans, it can raise havoc with sensitive physics experiments. That includes one called Majorana, in which the UW physicists are deeply involved, that is being planned for a lab nearly 1 mile down in the proposed Deep Underground Science and Engineering Laboratory in the old Homestake Mine in Lead, S.D.

The experiment is designed to determine the precise mass of subatomic particles called neutrinos, and any radioactive dust particles that make it into the lab could wreck the experiment, Miller said. Increased atmospheric radioactivity could cause problems for experiments in other laboratories as well, he said.

"This work helps us to understand filtering efficiency, how well the filters keep the radioactive materials out of the lab," he said.

The findings are contained in a paper the scientists posted on an open-access website called arXiv.org. Besides Robertson and Miller, authors are graduate students Jonathan Diaz and Alexis Schubert and research associates Andreas Knecht and Jarek Kaspar, all with the UW experimental nuclear physics center.

The paper will be updated as new results warrant and eventually will be submitted for publication in a peer-review journal.

For more information, contact Robertson at 206-616-2745, 206-685-9060 or rghr@uw.edu, or Miller at 206-543-4080 or mlm43@uw.edu.

The paper documenting the findings is at http://arxiv.org/abs/1103.4853.

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>