Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists detect low-level radioactivity from Japan arriving in Seattle

31.03.2011
University of Washington physicists are detecting radioactivity from Japanese nuclear reactors that have been in crisis since a mammoth March 11 earthquake, but the levels are far below what would pose a threat to human health.

On March 16, the scientists began testing air filters on the ventilation intake for the Physics-Astronomy Building on the UW campus, looking for evidence of dust particles containing radioactivity produced in nuclear fission.

The first positive results came from filters that were in place from noon on March 17 to 2 p.m. on March 18. Readings peaked three days later and then dropped, but have risen slightly since then.

"It's a faint signal. You have to filter a lot of air to see it," said Michael Miller, a UW research associate professor of physics. "We've definitely seen it fluctuate up and down, and we are correlating those peaks and drops with any changes in normal background radiation levels."

The measurements were begun because of concerns about effects of radioactivity on very sensitive physics experiments. They also document that radioactivity in airborne particles arriving in the United States is well within safety limits, said R.G. Hamish Robertson, a UW physics professor and director of the Center for Experimental Nuclear Physics and Astrophysics.

Using the air filters allowed sampling of 10 times more air than in methods used previously and proved to be a key in successfully detecting larger dust particles that had attracted radioactivity from the Japanese nuclear plants, Robertson said.

The readings allowed the physicists to make some detailed findings, including:

The presence of cesium isotopes in ratios that indicate the radioactivity was a result of fission in a nuclear reactor, not nuclear weapons.

The presence of relatively short-lived iodine 131 and tellurium isotopes, indicating the material came primarily from fuel rods, not spent fuel.

The absence of iodine 133, an isotope with an even shorter half-life than iodine 131, signaling that at least a week must have passed since the reactors were stopped.

"What that means is that they were successful in shutting down the reactors at the time of the earthquake," Robertson said. "The lack of iodine 133 indicates that the chain reaction was shut down."

The researchers speculate that, because they see only three of the many possible products of nuclear fission, the material that arrived in Seattle came from the evaporation of contaminated steam released from the reactors. Similar tests following the Chernobyl nuclear reactor meltdown in 1986 found a much broader spectrum of elements, indicating that material from actively burning fuel was being sent into the atmosphere.

While the radioactivity is arriving in the United States at levels far lower than are considered harmful to humans, it can raise havoc with sensitive physics experiments. That includes one called Majorana, in which the UW physicists are deeply involved, that is being planned for a lab nearly 1 mile down in the proposed Deep Underground Science and Engineering Laboratory in the old Homestake Mine in Lead, S.D.

The experiment is designed to determine the precise mass of subatomic particles called neutrinos, and any radioactive dust particles that make it into the lab could wreck the experiment, Miller said. Increased atmospheric radioactivity could cause problems for experiments in other laboratories as well, he said.

"This work helps us to understand filtering efficiency, how well the filters keep the radioactive materials out of the lab," he said.

The findings are contained in a paper the scientists posted on an open-access website called arXiv.org. Besides Robertson and Miller, authors are graduate students Jonathan Diaz and Alexis Schubert and research associates Andreas Knecht and Jarek Kaspar, all with the UW experimental nuclear physics center.

The paper will be updated as new results warrant and eventually will be submitted for publication in a peer-review journal.

For more information, contact Robertson at 206-616-2745, 206-685-9060 or rghr@uw.edu, or Miller at 206-543-4080 or mlm43@uw.edu.

The paper documenting the findings is at http://arxiv.org/abs/1103.4853.

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>