Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recommend this page:
To (Recipient's email address)
Your name (Optional)
From (Your email address)
Message (Optional)
Datenschutz-Hinweis: Die Mailadressen werden von uns weder gespeichert noch an Dritte weitergegeben. Sie werden ausschließlich zu Übertragungszwecken verwendet.

Physicist builds useful light source from harmonic generation

03.06.2014

A Kansas State University physicist's proposal may lead to a new way of creating tabletop light sources in the laboratory.

Cheng Jin, research associate in physics; Chii-Dong Lin, university distinguished professor of physics; and collaborators are developing a way to greatly enhance the generation of high-order harmonics to create powerful small tabletop light sources that are important to science and technology.


Kansas State University physicists are researching new ways of creating tabletop light sources in the laboratory.

The researchers are building theoretical framework and providing experimental guidance in the area of strong-field physics. The work is associated with the physics department's James R. Macdonald Laboratory.

"The ultimate goal of this research is to design any waveforms to control physical processes for different applications," Jin said.

... more about:
»X-ray »guidance »lasers »ultraviolet »waveform

The research appears in a recent Nature Communications article, "Waveforms for optimal sub-keV high-order harmonics with synthesized two- or three-colour laser fields." In the field of atomic, molecular and optical physics, it is rare for such a theoretical paper to be published in a multidisciplinary research journal such as Nature Communications, Jin said.

Other Kansas State University researchers involved include Anh-Thu Le, research associate professor of physics; Hui Wei, doctoral student in physics; and Guoli Wang, visiting scholar in physics and associate professor at Northwest Normal University in China.

High-order harmonic generation is an extreme nonlinear process when intense infrared lasers are focused in a gas medium. When used with the right filters, high-order harmonic generation pulses, which range from extreme ultraviolet to X-ray, can be used for numerous applications in science and technology.

For example, the emitted harmonics can produce isolated attosecond pulses or attosecond pulse trains. An attosecond is one-billionth of a billionth of a second. These attosecond pulses are used to study the dynamics of atoms, molecules and condensed media, and to investigate their evolution at the femtosecond and attosecond timescales. A femtosecond is one-millionth of a billionth of a second.

"High-order harmonic generation has been considered a very promising way to provide the tabletop coherent light sources in the extreme ultraviolet to X-ray regions, but so far is limited by its low intensity," Jin said.

While Jin has extensively studied high-order harmonic generation, the latest publication proposes a method of synthesizing two- or three-color lasers to optimize the intensity of high-order harmonic generation.

"Our method can greatly enhance the harmonic intensity by one to two orders of magnitude without the increase of total laser power," Jin said. "With the emerging intense high-repetition megahertz lasers, this paves a way to make high-order harmonic generation as a useful light in the coming years."

While laser technology of synthesizing two- or three-color lasers already exists, without the guidance of their work it is difficult to locate the laser parameters, such as laser intensities and relative phases between each two colors to form a waveform that optimizes the harmonic intensity in the laboratory by taking trial-and-error methods, Jin said. When these waveform-optimized laser pulses are combined with the emerging high-repetition megahertz lasers, they can generate high harmonics that are much higher than what is available today.

Lin's research group plans future research in the area of strong-field physics.

The group is exploring how to eliminate atto-chirp with a designed waveform, how to achieve the optimized waveform in the gas-filled hollow-core waveguide and how to optimize the waveforms over multiple optical cycles to enhance the intensity of the single harmonic.

"We expect waveform control of intense laser pulses will lead the next wave of research in strong-field physics and the theoretical study carried out in this work is essential for this research to move forward," Jin said.

Jin's previous research on high-order harmonic generation has been summarized in his book, "Theory of Nonlinear Propagation of High Harmonics Generated in a Gaseous Medium." The book was published by Springer in 2013 and supervised by Lin.

Source
Cheng Jin
785-532-1635
cjin@k-state.edu


Pronouncer
Cheng Jin is Chang Gin

Cheng Jin | Eurek Alert!
Further information:
http://www.k-state.edu/media/newsreleases/jun14/jin6214.html

Further reports about: X-ray guidance lasers ultraviolet waveform

More articles from Physics and Astronomy:

nachricht Dust pillars of destruction reveal impact of cosmic wind on galaxy evolution
28.07.2015 | Yale University

nachricht Treasure hunting in archive data reveals clues about black holes’ diet
23.07.2015 | Max-Planck-Institut für extraterrestrische Physik, Garching

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Neural efficiency hypothesis confirmed

28.07.2015 | Life Sciences

Scientists study predator-prey behavior between sharks and turtles

28.07.2015 | Life Sciences

Tropical deforestation releases large amounts of soil carbon

28.07.2015 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>