Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physical reality of string theory demonstrated

07.07.2009
String theory has come under fire in recent years. Promises have been made that have not been lived up to. Leiden theoretical physicists have now for the first time used string theory to describe a physical phenomenon. Their discovery has been reported this week in 'Science'.
The black hole that explains how quantum particles behave collectively in individual forms of quantum material such as those found in quark-gluon plasmas and high Tc super conductors (Nature 448, 1000, copyright Nature). Euphoria

‘This is superb. I have never experienced such euphoria.' Jan Zaanen makes no attempt to hide his enthusiasm. Together with Mihailo Cubrovic and Koenraad Schalm, he has successfully managed to shed light on a previously unexplained natural phenomeon using the mathematics of string theory.
Jan Zaanen: ‘The maths was a perfect match; it was superb.'
Hot issue

Electrons can form a special kind of state, a so-called quantum critical state, that plays a role in high-temperature super-conductivity. Super-conductivity at high temperatures has long been a 'hot issue' in physics. In super-conductivity, discovered by Heike Kamerlingh Onnes in Leiden, electrons can zoom through a material without meeting any resistance. In the first instance, this only seemed possible at very low temperatures close to absolute zero, but more and more examples are coming up where it also occurs at higher temperatures. So far, nobody has managed to explain high temperature super-conductivity. Zaanen: ‘It has always been assumed that once you understand this quantum-critical state, you can also understand high temperature super-conductivity. But, although the experiments produced a lot of information, we hadn't the faintest idea of how to describe this phenomenon.' String theory now offers a solution.

Holographic ‘AdS/CFT’ correspondence that relates a gravity-determined world in a higher dimension to quantum-critical worlds formed, for example, by electrons in a lower dimensional world on the 'outside' of the first world. (Science 322, 1639, copyright Science).

Theory of everything
This is the first time that a calculation based on string theory has been published in Science, even though the theory is widely known. 'There have always been a lot of expectations surrounding string theory,' Zaanen explains, having himself studied the theory to satisfy his own curiosity. 'String theory is often seen as a child of Einstein that aims to devise a revolutionary and comprehensive theory, a kind of 'theory of everything'. Ten years ago, researchers even said: 'Give us two weeks and we'll be able to tell you where the big bang came from. The problem of string theory was that, in spite of its excellent maths, it was never able to make a concrete link with the physical reality - the world around us.'
Quantum soup

But now, Zaanen, together with his colleagues Cubrovic and Schalm, are trying to change this situation, by applying string theory to a phenomenon that physicists, including Zaanen, have for the past fifteen years been unable to explain: the quantum-critical state of electrons. This special state occurs in a material just before it becomes super-conductive at high temperature. Zaanen describes the quantum-critical state as a 'quantum soup', whereby the electrons form a collective independent of distances, where the electrons exhibit the same behaviour at small quantum mechanical scale or at macroscopic human scale.

Koenraad Schalm

Bridge
Because of Zaanen's interest in string theory, he and string theoreticist Koenraad Schalm soon became acquainted after Schalm's arrival in Leiden. Zaanen had an unsolved problem and Schalm was an expert in the field of string theory. Their common interest brought them together, and they decided to work jointly on the research. They used the aspect of string theory known as AdS/CFT correspondence. This allows situations in a large relativistic world to be translated into a description at minuscule quantum physics level. This correspondence bridges the gap between these two different worlds. By applying the correspondence to the situation where a black hole vibrates when an electron falls into it, they arrived at the description of electrons that move in and out of a quantum-critical state.
Puzzle
After days and nights of hard grind, it was a puzzle that fitted. 'We hadn't expected it to work so well,' says a delighted Zaanen. 'The maths was a perfect fit; it was superb. When we saw the calculations, at first we could hardly believe it, but it was right.' Gateway to more

Although the mystery of high temperature super-conductivity isn't fully resolved, the findings do show that major problems in physics can be addressed using string theory. And this is just the start, Zaanen believes. ‘AdS/CFT correspondence now explains things that colleagues who have been beavering away for ages were unable to resolve, in spite of their enormous efforts. There are a lot of things that can be done with it. We don't fully understand it yet, but I see it as a gateway to much more.' The fact that Science was keen to publish this discovery early confirms this.

Fundamentals of Science is one of the 11 research profile areas of Leiden University

Hilje Papma | EurekAlert!
Further information:
http://www.research.leiden.edu/news/string-theory.html
http://www.leidenuniv.nl

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>