Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physical reality of string theory demonstrated

07.07.2009
String theory has come under fire in recent years. Promises have been made that have not been lived up to. Leiden theoretical physicists have now for the first time used string theory to describe a physical phenomenon. Their discovery has been reported this week in 'Science'.
The black hole that explains how quantum particles behave collectively in individual forms of quantum material such as those found in quark-gluon plasmas and high Tc super conductors (Nature 448, 1000, copyright Nature). Euphoria

‘This is superb. I have never experienced such euphoria.' Jan Zaanen makes no attempt to hide his enthusiasm. Together with Mihailo Cubrovic and Koenraad Schalm, he has successfully managed to shed light on a previously unexplained natural phenomeon using the mathematics of string theory.
Jan Zaanen: ‘The maths was a perfect match; it was superb.'
Hot issue

Electrons can form a special kind of state, a so-called quantum critical state, that plays a role in high-temperature super-conductivity. Super-conductivity at high temperatures has long been a 'hot issue' in physics. In super-conductivity, discovered by Heike Kamerlingh Onnes in Leiden, electrons can zoom through a material without meeting any resistance. In the first instance, this only seemed possible at very low temperatures close to absolute zero, but more and more examples are coming up where it also occurs at higher temperatures. So far, nobody has managed to explain high temperature super-conductivity. Zaanen: ‘It has always been assumed that once you understand this quantum-critical state, you can also understand high temperature super-conductivity. But, although the experiments produced a lot of information, we hadn't the faintest idea of how to describe this phenomenon.' String theory now offers a solution.

Holographic ‘AdS/CFT’ correspondence that relates a gravity-determined world in a higher dimension to quantum-critical worlds formed, for example, by electrons in a lower dimensional world on the 'outside' of the first world. (Science 322, 1639, copyright Science).

Theory of everything
This is the first time that a calculation based on string theory has been published in Science, even though the theory is widely known. 'There have always been a lot of expectations surrounding string theory,' Zaanen explains, having himself studied the theory to satisfy his own curiosity. 'String theory is often seen as a child of Einstein that aims to devise a revolutionary and comprehensive theory, a kind of 'theory of everything'. Ten years ago, researchers even said: 'Give us two weeks and we'll be able to tell you where the big bang came from. The problem of string theory was that, in spite of its excellent maths, it was never able to make a concrete link with the physical reality - the world around us.'
Quantum soup

But now, Zaanen, together with his colleagues Cubrovic and Schalm, are trying to change this situation, by applying string theory to a phenomenon that physicists, including Zaanen, have for the past fifteen years been unable to explain: the quantum-critical state of electrons. This special state occurs in a material just before it becomes super-conductive at high temperature. Zaanen describes the quantum-critical state as a 'quantum soup', whereby the electrons form a collective independent of distances, where the electrons exhibit the same behaviour at small quantum mechanical scale or at macroscopic human scale.

Koenraad Schalm

Bridge
Because of Zaanen's interest in string theory, he and string theoreticist Koenraad Schalm soon became acquainted after Schalm's arrival in Leiden. Zaanen had an unsolved problem and Schalm was an expert in the field of string theory. Their common interest brought them together, and they decided to work jointly on the research. They used the aspect of string theory known as AdS/CFT correspondence. This allows situations in a large relativistic world to be translated into a description at minuscule quantum physics level. This correspondence bridges the gap between these two different worlds. By applying the correspondence to the situation where a black hole vibrates when an electron falls into it, they arrived at the description of electrons that move in and out of a quantum-critical state.
Puzzle
After days and nights of hard grind, it was a puzzle that fitted. 'We hadn't expected it to work so well,' says a delighted Zaanen. 'The maths was a perfect fit; it was superb. When we saw the calculations, at first we could hardly believe it, but it was right.' Gateway to more

Although the mystery of high temperature super-conductivity isn't fully resolved, the findings do show that major problems in physics can be addressed using string theory. And this is just the start, Zaanen believes. ‘AdS/CFT correspondence now explains things that colleagues who have been beavering away for ages were unable to resolve, in spite of their enormous efforts. There are a lot of things that can be done with it. We don't fully understand it yet, but I see it as a gateway to much more.' The fact that Science was keen to publish this discovery early confirms this.

Fundamentals of Science is one of the 11 research profile areas of Leiden University

Hilje Papma | EurekAlert!
Further information:
http://www.research.leiden.edu/news/string-theory.html
http://www.leidenuniv.nl

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>