Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Better optical fiber networks

24.02.2011
A new architecture for optical fiber networks promises more cost-efficient fiber-optic networks for the consumer market

The household demand for increased internet bandwidth has grown tremendously because of the popularity of data-intensive internet activities such as movie streaming. Conventional copper telephone lines struggle to meet this demand, and modern optical fiber networks connecting the homes of consumers to the network backbone are becoming necessary.

Jing Zhang and co-workers at the A*STAR Institute of Microelectronics have now demonstrated a network scheme that considerably reduces the cost of fiber-optic installations and could make them more attractive for consumer use[1].

A key component of any optical fiber network is the laser that transmits information down the fiber. Unlike the silicon-based electronic circuits that control the data flow through the network, these lasers are made from semiconductor materials other than silicon, which is a poor light-emitter. This makes integrating lasers with silicon electronic circuits cumbersome and expensive, and so reducing the number of lasers in the network could substantially lower the cost of connecting users to the internet.

One widely adopted scheme for reducing the number of expensive lasers in the network is to transmit data to multiple homes at once using a single laser, with a transmission protocol ensuring that the correct data packet is sent to the correct user. Yet although this configuration reduces the number of lasers considerably, each connected household still needs a laser to send data back the other way.

The network architecture proposed by Zhang and his co-workers eliminates the laser at the consumer end. Instead, they propose using two strands of optical fiber: one to transmit data to the consumer as usual and another to send a continuous laser beam to all linked consumers. An integrated silicon chip at the consumer end picks up the incoming continuous laser beam, encodes it with the signal intended for back transmission, and then redirects this laser beam back to the internet provider. “Fiber is cheaper than lasers, particularly as it can be used for more than 20 years once it is installed,” says Zhang.

In their experiment, the researchers also demonstrated the practical viability of this scheme for the operation of commercial fiber-optic networks. They fabricated an integrated silicon circuit for this task and have already achieved successful operation at speeds of up to 10 gigabits per second. “Given the cost benefits, these transceiver devices may significantly accelerate the deployment of optical fiber networks,” says Zhang. “Our work has attracted serious commercial interest for collaboration on the development of silicon photonic transceivers.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Zhang, J., Liow, T.-Y., Lo, G.-Q. & Kwong, D.-L. 10Gbps monolithic silicon FTTH transceiver without laser diode for a new PON configuration. Optics Express 18, 5135–5141 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6281
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>