Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonics: Better optical fiber networks

24.02.2011
A new architecture for optical fiber networks promises more cost-efficient fiber-optic networks for the consumer market

The household demand for increased internet bandwidth has grown tremendously because of the popularity of data-intensive internet activities such as movie streaming. Conventional copper telephone lines struggle to meet this demand, and modern optical fiber networks connecting the homes of consumers to the network backbone are becoming necessary.

Jing Zhang and co-workers at the A*STAR Institute of Microelectronics have now demonstrated a network scheme that considerably reduces the cost of fiber-optic installations and could make them more attractive for consumer use[1].

A key component of any optical fiber network is the laser that transmits information down the fiber. Unlike the silicon-based electronic circuits that control the data flow through the network, these lasers are made from semiconductor materials other than silicon, which is a poor light-emitter. This makes integrating lasers with silicon electronic circuits cumbersome and expensive, and so reducing the number of lasers in the network could substantially lower the cost of connecting users to the internet.

One widely adopted scheme for reducing the number of expensive lasers in the network is to transmit data to multiple homes at once using a single laser, with a transmission protocol ensuring that the correct data packet is sent to the correct user. Yet although this configuration reduces the number of lasers considerably, each connected household still needs a laser to send data back the other way.

The network architecture proposed by Zhang and his co-workers eliminates the laser at the consumer end. Instead, they propose using two strands of optical fiber: one to transmit data to the consumer as usual and another to send a continuous laser beam to all linked consumers. An integrated silicon chip at the consumer end picks up the incoming continuous laser beam, encodes it with the signal intended for back transmission, and then redirects this laser beam back to the internet provider. “Fiber is cheaper than lasers, particularly as it can be used for more than 20 years once it is installed,” says Zhang.

In their experiment, the researchers also demonstrated the practical viability of this scheme for the operation of commercial fiber-optic networks. They fabricated an integrated silicon circuit for this task and have already achieved successful operation at speeds of up to 10 gigabits per second. “Given the cost benefits, these transceiver devices may significantly accelerate the deployment of optical fiber networks,” says Zhang. “Our work has attracted serious commercial interest for collaboration on the development of silicon photonic transceivers.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

[1] Zhang, J., Liow, T.-Y., Lo, G.-Q. & Kwong, D.-L. 10Gbps monolithic silicon FTTH transceiver without laser diode for a new PON configuration. Optics Express 18, 5135–5141 (2010).

Lee Swee Heng | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6281
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>