Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


One-Percent Measure of the Universe Constrains Dark Energy

At the January AAS meeting, researchers from the Baryon Oscillation Spectroscopic Survey (BOSS) announced that they have measured the distance to galaxies more than six billion light years away to an accuracy of one percent.
Together with information on the rate at which the Universe was expanding, these measurements allow the scientists at the Max Planck Institute for Extraterrestrial Physics to place powerful constraints on the properties of the mysterious Dark Energy.

This component is thought to be responsible for the current accelerated expansion of the Universe.

The new distance measurements were presented at the meeting of the American Astronomical Society by Harvard University astronomer Daniel Eisenstein, the director of SDSS-III. They are detailed in a series of articles submitted by the BOSS collaboration last month and available online. "Determining distance is a fundamental challenge of observational astronomy," said Eisenstein. "You see something in the sky -- how far away is it?"

Distances to planets in the solar system can be measured very accurately using radar, but for more distant objects astronomers must turn to less direct methods. Only a few hundred stars and a small number of star clusters are close enough to have distances measured with one-percent accuracy. Nearly all of these stars are only a few thousand light years away and still within our own Milky Way galaxy. Reaching out to distances a million times larger, the new BOSS measurements probe far beyond our galaxy to map the Universe with unprecedented accuracy.

"Making a one-percent measurement at a distance of six billion light years is a huge step forward," explained Eisenstein, "and it requires a completely different technique from measurements in the solar system or the Milky Way."

An artist's concept of the new measurement of the size of the Universe.

The gray spheres show the pattern of the "baryon acoustic oscillations" from the early Universe. Galaxies today have a slight tendency to align on the spheres -- the alignment is greatly exaggerated in this illustration. By comparing the size of the spheres (white line) to the predicted value, astronomers can determine to 1% accuracy how far away the galaxies are.

BOSS measures baryon acoustic oscillations (BAO), subtle periodic ripples imprinted in the arrangement of galaxies in the cosmos. These ripples are descendants of pressure waves that moved through the plasma of the early universe, which was so hot and dense that particles of light (photons) were tightly coupled to the protons and neutrons (known collectively as "baryons") that make up the nuclei of atoms. The size of these periodic ripples can be calculated from fundamental physics and used as a ruler that can be measured very precisely.

Ariel Sanchez and Francesco Montesano, junior researchers at the Max Planck Institute for Extraterrestrial Physics, led a companion paper that determined the extent of the BAO standard ruler not only along the direction perpendicular to the line of sight, but also in the direction parallel to it, analysing the anisotropy in the galaxy clustering. “This allows us to measure not only how far these galaxies are away from us, but also how fast they are moving,” explains Ariel Sanchez. “This means we can determine the rate at which the Universe was expanding at the time when the light we observe today left those galaxies six billion years ago.”

The BOSS team presented preliminary BAO measurements from its early galaxy maps a year ago, but the new analysis covers a larger volume of the Universe and thus provides a more accurate measurement, mapping the locations of 1.2 million galaxies. It also includes the first BAO measurements from a sample of more nearby galaxies.

“The distant galaxies allow us to look back to a time, when the Universe was about half its current age, the more nearby galaxies show us a more mature Universe,” says Ariel Sanchez. “When we take both measurements together, we get really powerful constraints on the properties of the dark energy component we think is responsible for the current acceleration of the expansion of the Universe.”

For now, the BOSS measurements appear consistent with a form of dark energy that stays constant through the history of the Universe in contrast to both ordinary and dark matter, which are diluted as the universe expands. This dark energy seems to be an irreducible energy associated with space itself, and is sometimes also interpreted as a "cosmological constant". This theory has now become the standard model for dark energy. “As our data keeps getting better and better, we will subject this standard model to increasingly stringent tests,” says Ariel Sanchez.

About the Sloan Digital Sky Survey

BOSS is the largest of the four projects that together make up the Sloan Digital Sky Survey III (SDSS-III). Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is .

SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.

Dr. Hannelore Hämmerle
MPE Pressesprecherin
Phone: +49 (0)89 30000 3980
Fax: +49 (0)89 30000 3569
Max-Planck-Institut für extraterrestrische Physik, Garching

Dr. Ariel Sánchez
Phone: +49 89 30000-3847
Max-Planck-Institut für extraterrestrische Physik, Garching

Original publications

Anderson, L., Aubourg, É., Bailey, S., Beutler, F., Bhardwaj, V., Blanton, M., Bolton, A.S., Brinkmann, J., Brownstein, J.R., Burden, A., Chuang, C.-H., Cuesta, A.J., Dawson, K.S., Eisenstein, D.J., Escoffier, S., Gunn, J.E., Guo, H., Ho, S., Honscheid, K., Howlett, C., Kirkby, D., Manera, M., Maraston, C., McBride, C.K., Mena, O., Montesano, F., Nichol, R.C., Nuza, S.E., Olmstead, M.D., Padmanabhan, N., Palanque-Delabrouille, N., Parejko, J., Percival, W.J., Petitjean, P., Prada, F., Price-Whelan, A.M., Reid, B., Roe, N.A., Ross, A.J., Ross, N.P., Sabiu, C.G., Saito, S., Samushia, L., Sánchez, A.G., Schlegel, D.J., Schneider, D.P., Scoccola, C.G., Seo, H.-J., Skibba, R.A., Strauss, M.A., Swanson, M.E.C., Thomas, D., Tinker, J.L., Tojeiro, R., Vargas-Magaña, M., Verde, L., Wake, D.A., Weaver, B.A., Weinberg, D.H., White, M., & Xu, X., Yèche, C., Zehavi, I., & Zhao, G.-B.

The Clustering of Galaxies in the SDSS-III DR11 Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 10 and 11 Galaxy Samples

submitted to Monthly Notices of the Royal Astronomical Society

Vargas-Magaña, M., Ho, S., Xu, X., Sánchez, A.G., O'Connell, R., Eisenstein, D.J., Cuesta, A.J., Percival, W.J., Ross, A.J., Aubourg, É., Escoffier, S., Kirkby, D., Manera, M., Schneider, D.P., Tinker, J.L., & Weaver, B.A.

SDSS-III Baryon Oscillation Spectroscopic Survey: Analysis of Potential Systematics in Fitting of Baryon Acoustic Feature
submitted to Monthly Notices of the Royal Astronomical Society

Ariel G. Sanchez, Francesco Montesano, Eyal A. Kazin, Eric Aubourg, Florian Beutler, Jon Brinkmann, Joel R. Brownstein, Antonio J. Cuesta, Kyle S. Dawson, Daniel J. Eisenstein, Shirley Ho, Klaus Honscheid, Marc Manera, Claudia Maraston, Cameron K. McBride, Will J. Percival, Ashley J. Ross, Lado Samushia, David J. Schlegel, Donald P. Schneider, Ramin Skibba, Daniel Thomas, Jeremy L. Tinker, Rita Tojeiro, David A. Wake, Benjamin A. Weaver, Martin White, Idit Zehavi

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples
submitted to Monthly Notices of the Royal Astronomical Society

Dr. Hannelore Hämmerle | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>



Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

More VideoLinks >>>