Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Opening the African Sky


A new receiver project of MPIfR in Bonn has received full funding by MPG. The frequency range 1.6 to 3.5 GHz can only be observed under significant sensitivity losses in Effelsberg due to man-made radio emission.

Thus the MeerKAT observatory in South Africa, has been chosen as a host for this receiver system. MeerKAT will be the most sensitive observatory of the southern hemisphere in centimetre wavelengths. Thanks to its unique location, MeerKAT is hardly influenced by interference. The 11 Million Euro project will not only grant Max Planck scientists access to a world-class facility but also extend the frequency range for all scientists and thus empower MeerKATs scientific potential.

Radio image at 408 MHz with overlaid pulsar positions (black dots). The new receivers will search the area shown by the black box for unusual pulsar systems, laboratories for fundamental physics.

redits: MPIfR, Haslam et al. 1982 (Radio Image); MPIfR, Cherry Ng (pulsar positions)

MeerKAT antenna and the night sky.

SKA South Africa (Picture taken in March 2014)

Radio astronomy provides an independent view of the cosmos. It allows the study of objects and processes that are otherwise not accessible, and enables the study of a wide range of questions in fundamental physics and astrophysics.

The discovery space is mostly limited by the sensitivity of the radio telescopes, but other factors like sky access, time and frequency resolution, throughput (or “survey speed”) and complementarity to existing facilities, are hugely important factors. Currently, major efforts are underway to make progress on all these factors. An upfront development is provided by the MeerKAT observatory in South Africa. When completed it will already be a world-class facility in stand-alone mode.

MeerKAT will even be more sensitive than the largest fully-steerable radio telescopes in the Northern hemisphere, the 100-m radio telescope at Effelsberg and the Green Bank Telescope in West Virginia. In addition, it will provide a spatial resolution comparable to an 8 km diameter telescope. The science potential of MeerKAT is therefore enormous.

“The MeerKAT receiver project at our institute provides a receiving system that is finely tuned to the science interests of Max Planck scientists”, says Gundolf Wieching, head of the Electronics division at MPIfR where the new receiver will be built. “This will allow us to exploit this formidable new instrument and to bring Max Planck scientists to an optimal position to harness other future facilities.”

The funded receiver for a frequency range from 1.6 to 3.5 GHz will enable science that falls into the core interests of the MPIfR. “Our research interests include fundamental physics with tests of theories of gravity and gravitational wave detection by means of pulsar observations”, states Michael Kramer, Director at MPIfR and Head of its Fundamental Physics research department.

“The project is actually expected to do transformational science on pulsars and other areas of astronomy.” Other areas include the exploration of the dynamic radio sky, for example with the detection of fast cosmological radio bursts, and also highly sensitive molecular spectroscopy of the interstellar medium or high-resolution imaging of radio sources using Very Long Baseline Interferometry. Each of these science topics alone makes the exploitation of MeerKAT extremely desirable, but together they provide the most compelling background for an excellent positioning of Max Planck scientists in this highly active research field.

In addition to providing the frontend, the complete project also includes the design and the construction of a state-of-the-art digital backend system which will turn MeerKAT into a discovery machine for pulsars and other time-domain phenomena. The receiver system will be designed and constructed by the MPIfR in collaboration with colleagues from the Universities of Manchester and Oxford “The investment is an endorsement of the excellence of the MeerKAT and the South African team which designed and is building it”, concludes Bernie Fanaroff, Director of the SKA South Africa project. “We welcome the strong and growing collaboration between South African and German scientists in astronomy.”

The MPIfR MeerKAT Receiver will provide a receiving system, i.e. a frontend plus a backend system for time-domain processing. The detection frequency covers a range from 1.6 to 3.5 GHz, it is a dual polarization system with an analogue to digital converter stability below one pico second (10-12 s, this is equivalent to a light travel distance less than 0.3 mm)

The continuous data rate of 5.5 TeraBit/sec (1 TeraBit = 1012 Bit) is equivalent to the content of 147 DVDs per second or 0.5 million DVDs per hour. With such a huge amount of data they have to be reduced online, requiring a calculation power of several PetaOps (1015 operations per second). These highly demanding requirements will lead to new technological developments also useful for future instrumentations beyond the scope of radio astronomy.

MeerKAT is a fully funded radio observatory under construction in the Northern Cape of South Africa. It will be the largest and most sensitive radio telescope in the Southern hemisphere until its integration into the Square Kilometer Array (SKA) in the middle of the next decade. MeerKAT will consist of 64 13.5-m dishes, each with an offset-Gregorian configuration, designed by the German VERTEX company. Such configuration provides an unblocked aperture for increased sensitivity but also facilitating optical, imaging quality and good rejection of unwanted radio frequency interference from satellites and terrestrial transmitters. When completed, MeerKAT will be nearly 5-times more sensitive than the 64-m Parkes radio telescope, the largest radio telescope in the Southern Hemisphere now.


Dr. Gundolf Wieching,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-175

Prof. Dr. Michael Kramer,
Director and Head of Research Department „Fundamental Physics in Radio Astronomy“
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-278

Dr. Norbert Junkes
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399

Weitere Informationen:

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>