Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening the African Sky

02.12.2014

A new receiver project of MPIfR in Bonn has received full funding by MPG. The frequency range 1.6 to 3.5 GHz can only be observed under significant sensitivity losses in Effelsberg due to man-made radio emission.

Thus the MeerKAT observatory in South Africa, has been chosen as a host for this receiver system. MeerKAT will be the most sensitive observatory of the southern hemisphere in centimetre wavelengths. Thanks to its unique location, MeerKAT is hardly influenced by interference. The 11 Million Euro project will not only grant Max Planck scientists access to a world-class facility but also extend the frequency range for all scientists and thus empower MeerKATs scientific potential.


Radio image at 408 MHz with overlaid pulsar positions (black dots). The new receivers will search the area shown by the black box for unusual pulsar systems, laboratories for fundamental physics.

redits: MPIfR, Haslam et al. 1982 (Radio Image); MPIfR, Cherry Ng (pulsar positions)


MeerKAT antenna and the night sky.

SKA South Africa (Picture taken in March 2014)

Radio astronomy provides an independent view of the cosmos. It allows the study of objects and processes that are otherwise not accessible, and enables the study of a wide range of questions in fundamental physics and astrophysics.

The discovery space is mostly limited by the sensitivity of the radio telescopes, but other factors like sky access, time and frequency resolution, throughput (or “survey speed”) and complementarity to existing facilities, are hugely important factors. Currently, major efforts are underway to make progress on all these factors. An upfront development is provided by the MeerKAT observatory in South Africa. When completed it will already be a world-class facility in stand-alone mode.

MeerKAT will even be more sensitive than the largest fully-steerable radio telescopes in the Northern hemisphere, the 100-m radio telescope at Effelsberg and the Green Bank Telescope in West Virginia. In addition, it will provide a spatial resolution comparable to an 8 km diameter telescope. The science potential of MeerKAT is therefore enormous.

“The MeerKAT receiver project at our institute provides a receiving system that is finely tuned to the science interests of Max Planck scientists”, says Gundolf Wieching, head of the Electronics division at MPIfR where the new receiver will be built. “This will allow us to exploit this formidable new instrument and to bring Max Planck scientists to an optimal position to harness other future facilities.”

The funded receiver for a frequency range from 1.6 to 3.5 GHz will enable science that falls into the core interests of the MPIfR. “Our research interests include fundamental physics with tests of theories of gravity and gravitational wave detection by means of pulsar observations”, states Michael Kramer, Director at MPIfR and Head of its Fundamental Physics research department.

“The project is actually expected to do transformational science on pulsars and other areas of astronomy.” Other areas include the exploration of the dynamic radio sky, for example with the detection of fast cosmological radio bursts, and also highly sensitive molecular spectroscopy of the interstellar medium or high-resolution imaging of radio sources using Very Long Baseline Interferometry. Each of these science topics alone makes the exploitation of MeerKAT extremely desirable, but together they provide the most compelling background for an excellent positioning of Max Planck scientists in this highly active research field.

In addition to providing the frontend, the complete project also includes the design and the construction of a state-of-the-art digital backend system which will turn MeerKAT into a discovery machine for pulsars and other time-domain phenomena. The receiver system will be designed and constructed by the MPIfR in collaboration with colleagues from the Universities of Manchester and Oxford “The investment is an endorsement of the excellence of the MeerKAT and the South African team which designed and is building it”, concludes Bernie Fanaroff, Director of the SKA South Africa project. “We welcome the strong and growing collaboration between South African and German scientists in astronomy.”

The MPIfR MeerKAT Receiver will provide a receiving system, i.e. a frontend plus a backend system for time-domain processing. The detection frequency covers a range from 1.6 to 3.5 GHz, it is a dual polarization system with an analogue to digital converter stability below one pico second (10-12 s, this is equivalent to a light travel distance less than 0.3 mm)

The continuous data rate of 5.5 TeraBit/sec (1 TeraBit = 1012 Bit) is equivalent to the content of 147 DVDs per second or 0.5 million DVDs per hour. With such a huge amount of data they have to be reduced online, requiring a calculation power of several PetaOps (1015 operations per second). These highly demanding requirements will lead to new technological developments also useful for future instrumentations beyond the scope of radio astronomy.

MeerKAT is a fully funded radio observatory under construction in the Northern Cape of South Africa. It will be the largest and most sensitive radio telescope in the Southern hemisphere until its integration into the Square Kilometer Array (SKA) in the middle of the next decade. MeerKAT will consist of 64 13.5-m dishes, each with an offset-Gregorian configuration, designed by the German VERTEX company. Such configuration provides an unblocked aperture for increased sensitivity but also facilitating optical, imaging quality and good rejection of unwanted radio frequency interference from satellites and terrestrial transmitters. When completed, MeerKAT will be nearly 5-times more sensitive than the 64-m Parkes radio telescope, the largest radio telescope in the Southern Hemisphere now.

Contact:

Dr. Gundolf Wieching,
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-175
E-mail: wieching@mpifr-bonn.mpg.de

Prof. Dr. Michael Kramer,
Director and Head of Research Department „Fundamental Physics in Radio Astronomy“
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49-228-525-278
E-mail: mkramer@mpifr-bonn.mpg.de

Dr. Norbert Junkes
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Phone: +49 228 525-399
Email: njunkes@mpifr-bonn.mpg.de


Weitere Informationen:

http://www.mpifr-bonn.mpg.de/announcements/2014/6

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>