Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An octave spanning chip-based optical ruler

08.08.2011
Scientists at MPQ develop octave-spanning frequency comb with a microresonator

More than a decade ago, the frequency comb technique was developed at the Max Planck In-stitute of Quantum Optics by Professor Theodor W. Hänsch. The new tool has stimulated fun-damental research as well as laser development and its applications because it gave rise to a major increase in the accuracy of measuring optical frequencies.


Octave spanning frequency comb generation in a microresonator. Panel (a) shows the ex-periment with a glass nano-fiber and a silicon chip with optical resonators. A scanning electron mi-croscope picture of a resonator is shown in panel (b). Panel (c) shows the optical spectrum of the frequency comb generated in such a microresonator seeded by a single frequency laser.

Already a couple of years ago, a team of scientists around Dr. Tobias Kippenberg, formerly Leader of the Max Planck Research Group “Laboratory of Photonics and Quantum Measurements” at MPQ, who has since then become Associate Professor at the Ecole Polytechnique Fédérale de Lausanne (EPFL), succeeded for the first time in generating optical frequency combs using chip-based quartz glass toroids with diameters on the micrometer scale.

Now the scientists made a big step further: their new microresonators produce light over a range of more than an octave and are at the same time precisely tunable (PRL 107, 063901, 1 August 2011). This achievement brings a variety of applications into reach, such as optical telecommunications or the precise calibration of spectrographs in astrophysics.

A frequency comb is a light source containing – similar to a rainbow – a large spectrum of colours. However, the frequencies are not continuously distributed. Instead, up to a million spectral lines are spaced in exactly the same distance. The superposition of this “comb” with another laser beam results in a pattern from which the unknown laser frequency can be determined with very high accuracy. The frequency comb developed by Prof. Hänsch is based on a mode-locking process in short-pulse lasers. This set-up consists of many optical components, even though it is made today relatively compact and commercially available. Indeed, Menlo System a spin-off company established by MPQ which is meanwhile marketing the frequency comb technology worldwide.

A couple of years ago, the group “Laboratory of Photonics and Quantum Measurements”, which was associated with the Laser Spectroscopy Division of Professor Hänsch, has succeeded in generating a frequency comb by means of a tiny microstructure, a toroidal glass resonator with a diameter of less than 100 micrometres. This was done in cooperation with Dr. Ronald Holzwarth from Menlo Sys-tems Ltd. and promises to radically reduce the size of frequency comb generators.

Using a “nanowire” made of glass the scientists couple light from a diode laser into this monolithic structure, where it is stored for a rather long time. This leads to extremely high light intensities inside the resonator, i.e. photon densities, which again produce nonlinear effects such as ‘four-wave mixing’ induced by the Kerr effect: two light quanta of equal energy are converted to two photons of which one light quantum has a higher energy, the other a lower energy than the original ones. The newly produced light fields can in turn interact with the original light fields, thereby producing new frequencies. From this cascade emerges a broad, discrete spectrum of frequencies. By optimizing the geometry of the toroid microresonator, Dr. Pascal Del’Haye (MPQ) and Tobias Herr (EPFL), doc-toral students at the referred experiment, have managed to compensate the effects of dispersion, such that the photon round-trip time inside the resonator remains the same for all light frequencies. Now the microresonators produce light over the range of more than an octave, from von 900 bis 2170 nm (near IR), for the first time. (As on the keyboard of a piano, the range of an octave corresponds to a doubling of the frequency.)

By raising the intensity of the light coupled into the resonator the frequencies of the comb can be shifted simultaneously. The higher intensities increase the temperature of the glass structure by up to 800 degree Celsius whereby the resonator is expanding and changing its index of refraction. Both effects lead to a shift of the comb lines towards lower frequencies, i.e. longer wavelengths. The broad range of frequencies as well as the tunability is an important pre-condition for self-referencing, where the lower range of the spectrum is doubled and compared to the upper part. Self-referencing is an important precondition for the use of frequency combs in metrology.

Also optical telecommunications will profit from the new tool. Whereas in the conventional fre-quency comb the lines are extremely close and of very low intensity, the spectral lines of the mono-lithic frequency comb have a separation of about 850 gigahertz and powers of the order of one milliwatt. This spacing and power level corresponds to the typical requirements for the “carriers” of the data channels in fibre-based optical communications. Tunability and broad range make the device also suitable for very precise calibration of spectrographs for astrophysics. Due to the large variety of possible applications many groups worldwide show interest in using the resonators for the miniaturi-zation of photonic devices. A number of other geometries and materials are investigated, e.g. pol-ished crystals, highly reflective fiber cavities and silicon structures based on computer-chip technol-ogy. [Olivia Meyer-Streng]

Prof. Tobias J. Kippenberg (PhD)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
(Swiss Federal Institute of Technology Lausanne)
Associate Professor
Phone: + 41 21 69 34428 (CH) / +41795350016
E-mail: tobias.kippenberg@epfl.ch
http://k-lab.epfl.ch/
Dr. Pascal Del‘Haye
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49(0)89 / 32 905 286
Fax: +49(0)89 / 32 905 200
E-mail: pascal.delhaye@mpq.mpg.de
Max-Planck-Institut für Quantenoptik
Dr. Olivia Meyer-Streng
Press and Public Relations
Phone: +49(0)89 / 32 905 213
Fax: +49(0)89 / 32 905 200
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://k-lab.epfl.ch/
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>