Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU physicists show way to count sweets in a jar -- from inside the jar

31.07.2009
How many sweets fit into a jar? This question depends on the shapes and sizes of the sweets, the size of the jar, and how it is filled.

Surprisingly, this ancient question remains unanswered because of the complex geometry of the packing of the sweets. Moreover, as any contestant knows, guessing the number of sweets in the jar is difficult because the sweets located at the center of the jar are hidden from view and can't be counted. Researchers at New York University have now determined how sweets pack from inside the jar, making it easier to more accurately count them.

To answer the question of how particles pack in general, the NYU team made a transparent, fluorescent packing of oil droplets in water, which allowed it to record three-dimensional images and examine the local geometry of each member of the pack. In other words, what does a packing look like from the point of view of a grain within—i.e., a "granocentric" view?

Their findings, which appear in the latest issue of the journal Nature, show that packing strongly depends on the size distribution—larger particles pack with more neighbors than do smaller ones. Nevertheless, the average number of contacts per particle always stays the same to preserve mechanical stability.

These experimental clues led the researchers to develop a model that successfully captures the geometry, connectivity, and density of the observed sphere packings. This means that starting from a set of particles of known sizes, the density of packing can be determined, making it possible to guess the number of sweets in the jar. Indeed, the model was able to also predict experimentally observed trends in density for mixtures of particles of two different sizes with varying ratios.

Packing problems are important in technological settings as well, ranging from oil extraction through porous rocks to grain storage in silos to the compaction of pharmaceutical powders into tablets. The ability to predict the packing of polydisperse particles—a range of sizes in a single system—has significant impact on these and related technologies.

The research was conducted by the group led by Jasna Brujic, an assistant professor in NYU's Department of Physics, consisting of post-doctoral researchers Maxime Clusel and Eric Corwin and junior research scientist Alexander Siemens.

The Brujic Laboratory is part of NYU's Center for Soft Matter Research. For more on the Brujic Laboratory, go to http://www.physics.nyu.edu/~jb2929/index.html; for more on the center, go to http://csmr.as.nyu.edu/page/home.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>