Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU physicists make room for oddballs

05.08.2009
New research on random packing could mean big advance for industry

Here's a question. How many gumballs of different sizes can fit in one of those containers at the mall so as to reward a well-spent quarter? It's hard to believe that most people never consider it even when guessing the number of candies in a bowl at Halloween.

But physicists at the Materials Research Science and Engineering Center at New York University recently developed a new way to help answer the question. They say the solution is found in how the particles pack in terms of many neighboring gumballs a single gumball can randomly touch within a given container.

Though it may seem intuitive, confirming the answer has long proven elusive because of super complex geometry when dealing with three-dimensional objects of mixed sizes and shapes. But in a recent breakthrough, researchers Maxime Clusel, Eric Corwin and Alex Siemens led by NYU physics professor Jasna Brujic, derived and tested a statistical model that potentially could help industry sort through a variety of packing problems from gumballs in vending machines to grain storage in silos or dry clothes detergent in retail boxes.

"We have discovered a simple organizing principle for particulate packing that predicts our experimental findings," said Brujic. The latest issue of the journal Nature reports the findings. The National Science Foundation funds the research.

The new model predicts the geometry of randomly packing spheres of different sizes in terms of how many nearest neighbors a particle can have, how far apart those neighbors can be and how free space is distributed throughout the packing. It does all this by determining geometric possibilities from the viewpoint of a single particle, which the authors term the "granocentric" view.

"Bigger particles pack with more neighbors, while smaller particles have on average fewer neighbors," said Corwin, a postdoctoral research fellow. "By combining this simple insight with probabilistic mathematics we created an accurate model demonstrating how this organizing rule gives rise to packings where particles have a wide range or distribution of contacts, neighbors and local densities."

The research team used a two step process to verify the model. First they used a 3-D microscope to spy how oil droplets packed together in water. The research enabled the team to determine the number of nearest neighbors the oil droplets could have and other parameters. Then they compared what they found to what was predicted by the statistical model.

"We were surprised to find that such a simple model, based on physical intuition alone, could capture the properties of a complex packing of droplets in an emulsion," Brujic said.

The model predicted the percentage of space occupied by the particles in a container, such that researchers could statistically estimate the number of particles without knowing all the positions of the particles.

The structure of a packing of spheres of equal size is an old problem, whose complexity has challenged mathematicians and physicists for centuries. At first one would think that the structure of packings of spheres of random sizes is even more complex, but surprisingly, the researchers discovered that this is not the case.

The results could be used in a variety of industrial packing processes. For example, the model could be used to determine how finely to mill medicines that pharmaceutical companies pack into drug capsules, producing more effective pills that are smaller and easier to swallow.

"Packing problems are ubiquitious in industry," said Corwin. "An unexpected area of application might be to the world of paint creation. Paint is composed of small particles of pigment suspended in a fluid. As the fluid evaporates the particles are packed tighter and tighter, slowing down the evaporation of the fluid. Thus, one could tune the distribution of particle sizes to achieve paint with particular drying characteristics."

The research was conducted at NYU's Center for Soft Matter.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>