Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU physicists make room for oddballs

05.08.2009
New research on random packing could mean big advance for industry

Here's a question. How many gumballs of different sizes can fit in one of those containers at the mall so as to reward a well-spent quarter? It's hard to believe that most people never consider it even when guessing the number of candies in a bowl at Halloween.

But physicists at the Materials Research Science and Engineering Center at New York University recently developed a new way to help answer the question. They say the solution is found in how the particles pack in terms of many neighboring gumballs a single gumball can randomly touch within a given container.

Though it may seem intuitive, confirming the answer has long proven elusive because of super complex geometry when dealing with three-dimensional objects of mixed sizes and shapes. But in a recent breakthrough, researchers Maxime Clusel, Eric Corwin and Alex Siemens led by NYU physics professor Jasna Brujic, derived and tested a statistical model that potentially could help industry sort through a variety of packing problems from gumballs in vending machines to grain storage in silos or dry clothes detergent in retail boxes.

"We have discovered a simple organizing principle for particulate packing that predicts our experimental findings," said Brujic. The latest issue of the journal Nature reports the findings. The National Science Foundation funds the research.

The new model predicts the geometry of randomly packing spheres of different sizes in terms of how many nearest neighbors a particle can have, how far apart those neighbors can be and how free space is distributed throughout the packing. It does all this by determining geometric possibilities from the viewpoint of a single particle, which the authors term the "granocentric" view.

"Bigger particles pack with more neighbors, while smaller particles have on average fewer neighbors," said Corwin, a postdoctoral research fellow. "By combining this simple insight with probabilistic mathematics we created an accurate model demonstrating how this organizing rule gives rise to packings where particles have a wide range or distribution of contacts, neighbors and local densities."

The research team used a two step process to verify the model. First they used a 3-D microscope to spy how oil droplets packed together in water. The research enabled the team to determine the number of nearest neighbors the oil droplets could have and other parameters. Then they compared what they found to what was predicted by the statistical model.

"We were surprised to find that such a simple model, based on physical intuition alone, could capture the properties of a complex packing of droplets in an emulsion," Brujic said.

The model predicted the percentage of space occupied by the particles in a container, such that researchers could statistically estimate the number of particles without knowing all the positions of the particles.

The structure of a packing of spheres of equal size is an old problem, whose complexity has challenged mathematicians and physicists for centuries. At first one would think that the structure of packings of spheres of random sizes is even more complex, but surprisingly, the researchers discovered that this is not the case.

The results could be used in a variety of industrial packing processes. For example, the model could be used to determine how finely to mill medicines that pharmaceutical companies pack into drug capsules, producing more effective pills that are smaller and easier to swallow.

"Packing problems are ubiquitious in industry," said Corwin. "An unexpected area of application might be to the world of paint creation. Paint is composed of small particles of pigment suspended in a fluid. As the fluid evaporates the particles are packed tighter and tighter, slowing down the evaporation of the fluid. Thus, one could tune the distribution of particle sizes to achieve paint with particular drying characteristics."

The research was conducted at NYU's Center for Soft Matter.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>