Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear physics incorporates a 'strange' flavor

02.08.2010
Calculating the binding energy between hyperon particles contributes to understanding a new type of neutron star

In 2009, physicists from Japan’s KEK high-energy proton accelerator announced the sighting of a rare event: an unusually bulky beryllium nucleus that, in addition to four protons and five neutrons, contained two particles called ‘hyperons’.

Now, Emiko Hiyama at the RIKEN Nishina Center for Accelerator-Based Science, Wako, and her colleagues from several Japanese universities have presented a calculation that provides the most precise description available of the interactions between nuclei and hyperons in the double-hyperon beryllium nucleus observed at KEK1.

Hyperons—particles that contain at least one so-called ‘strange’ quark—exist for less than a billionth of a second before they decay. Scientists know relatively little about how hyperons interact with matter, but speculate that the hot, dense environment of a neutron star would allow these particles to exist in an almost stable state. If they are correct, a hyperon neutron star would be a new state of matter.

According to Hiyama, one of the main interests of hypernuclear physics is to understand interactions between baryons—particles such as protons and neutrons that consist of three quarks—and other particles. “Our study will contribute to understanding such interactions at the core of a neutron star.”

Quarks come in six so-called ‘flavors’: up, down, strange, charm, bottom and top. Only the up and down quarks, which make up the protons and neutrons in atomic nuclei, are stable. High-energy collisions, such as those performed at KEK, are needed to produce the hyperons that contain the more massive strange quark.

Finding the interactions between the eleven particles that constitute the double-hyperon beryllium nucleus is prohibitively difficult. To simplify the calculation of this ‘many-body’ problem, Hiyama and her colleagues approximated the double-hyperon nucleus as five particles: two helium nuclei, one neutron and the two hyperon particles (Fig. 1). This allowed them to predict the energy that binds the two hyperons together in the nucleus and compare their theoretical results with experimental data. Their calculations indicated that hyperons act to shrink the beryllium nucleus—an unusual effect, since nuclei are normally considered incompressible.

Hiyama’s calculations will be an essential tool to understand the attractive forces between hyperons in a neutron star, and will help researchers to analyze experimental results at Japan’s new proton accelerator complex, J-PARC, which is expected to produce multiple double-hyperon nuclei.

“At present, the only way to determine the energy of the hypernucleon is to perform these accurate many-body calculations,” says Hiyama.

The corresponding author for this highlight is based at the Strangeness Nuclear Physics Laboratory, RIKEN Nishina Center for Accelerator-Based Science

Journal information

1. Hiyama, E., Kamimura, M., Yamamoto, Y. & Motoba, T. Five-body cluster structure of the double-Ë hypernucleus 11ËËBe. Physical Review Letters 104, 212502 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6352
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>