Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nuclear Masses Measured to within a Hair’s Precision

MSU researchers have made precise mass measurements of four such nuclei, 68-selenium, 70-selenium, 71-bromine and an excited state of 70-bromine. The results may make it easier to understand X-ray bursts, the most common stellar explosions in the galaxy.

No one likes to say exactly how much they weigh. Rare atomic nuclei are similarly coy, obviously not because of their own volition, but rather because they are exceedingly difficult to produce and, while they exist, very short-lived and difficult to corral and accurately measure.

Now, MSU researchers have made precise mass measurements of four such nuclei, 68-selenium, 70-selenium, 71-bromine and an excited state of 70-bromine (yes, a nucleus weighs measurably more when it is excited because of Einstein’s famous E=mc2 declaration). The results may make it easier to understand X-ray bursts, the most common stellar explosions in the galaxy.

X-ray bursts are spectacular runaway thermonuclear reactions on neutron stars that release vast amounts of energy in a short period of time. In just 10 seconds, an X-ray burst might release as much energy as our sun does in one month. Such explosions occur in binary systems where a neutron star and a second donor star orbit each other. The donor star rains hydrogen and helium onto the surface of the neutron star. When enough of this material accumulates, nuclear fusion reactions begin, dramatically increasing temperature to nearly 2 billion degrees Fahrenheit, which is about 10,000 times hotter than the surface of the sun. This temperature spike gives rise to the explosion and eventually to what’s known as the rapid proton capture nucleo-synthesis-process, or rp-process.

The rp-process occurs when a seed nucleus in a super-hot stellar environment begins capturing protons in quick succession, piling them up until the nucleus cannot hold any more. The nucleus then spits out some energy, turning a proton into a neutron, which allows the piling on to start anew.

The rp-process is roughly analogous to stacking blocks one after the other. Eventually the stack gets sufficiently tall and unsteady that the blocks fall into a more compact and stable jumble. If the stacking continues on top of this pile, eventually a new jumbled shape will be created when the blocks fall down a second time. In time, this repeated stacking and tumbling will create a slew of new increasingly larger piles, just as the successive capture and decay during the rp-process is thought to create many heavy elements, possibly up to tellurium, stable versions of which have 52 protons and anywhere from 70 to 74 neutrons.

The MSU team, including nuclear science doctoral student Josh Savory, were interested in four atomic nuclei because they represent a pause button of sorts during the rp-process. Normally the capture-decay sequence that creates new elements happens in a blink of an eye, in a matter of seconds or less. However it takes time, perhaps 30 seconds or more, for selenium-68 and a few similar nuclei to decay. It’s possible these waiting points can be bypassed if two protons are captured instead of one. Precise mass measurements help to refine theoretical models that explain whether or not these waiting points are bypassed and in general, just how fast nuclear reactions proceed during X-ray bursts. This information, in turn, helps researchers predict and explain just how much of each of the various elements are produced during the rp-process.

The experiment, conducted by Savory and several colleagues, used NSCL’s Low Energy Beam and Ion Trap facility, LEBIT, to make the mass measurements of the four nuclei. LEBIT uses a technique known as Penning trap mass spectrometry to perform these measurements. (A physics 101 aside: Weight and mass are often confused. Weight of matter is entirely dependent upon the strength of gravity while the mass of matter is constant. Someone who weighed 180 pounds on Earth would weigh just 30 pounds on the moon, which exerts a much more modest gravitational pull. That same person’s mass would be the same on Earth, the moon or, with few exceptions, anywhere in the universe. The equation is w (weight) = g (gravity) X m (mass)).

LEBIT takes isotope beams traveling at roughly half the speed of light and carefully slows and stops the isotopes for highly accurate mass measurement. MSU is home to the only physics lab in the world capable of performing such measurements on isotopes produced by fast beam fragmentation, a technique that allows for the production of extremely rare nuclei not normally found on Earth.

The MSU team measured the masses to a level of precision as high as 1 part per 100 million (for 68-selenium) and with an improved precision as large as 100 times (for 71-bromine) in comparison to previous such measurements.

“As an analogue, think of a scale precise enough to see how your weight changes when you pluck just one hair out of your head,” said Savory, lead author of a paper describing the results which appears in Physical Review Letters.

Geoff Koch | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>