Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL's Wide-field Imager Selected for Solar Probe Plus Mission

30.09.2010
NASA has chosen the Naval Research Laboratory's Wide-field Imager to be part of the Solar Probe Plus mission slated for launch no later than 2018.

The Solar Probe Plus, a small car-sized spacecraft will plunge directly into the sun's atmosphere approximately four million miles from our star's surface. It will explore a region no other spacecraft ever has encountered in an effort to unlock the sun's biggest mysteries.

Artist's concept of the Solar Probe Plus approaching the sun. (Credit: NASA) For decades, scientists have known that the corona, or the outer atmosphere, is several hundreds of times hotter than the visible solar surface and that the solar wind accelerates up to supersonic speeds as it travels through the corona. In the Solar Probe Plus mission, scientists hope to find answers to the questions: why is the solar corona so much hotter than the photosphere? And how is the solar wind accelerated? The answers to these questions can be obtained only through in-situ measurements of the solar wind down in the corona.

NRL's Wide-field Imager for Solar Probe (WISPR) is one of five science investigations selected by NASA for this mission. It is the only optical investigation because the solar environment is so hot the instruments need to be tucked behind a heat shield. NRL's Dr. Russell Howard, the principal investigator, says, "This is an extremely exciting mission - no other spacecraft has ever gone this close - it is like the early voyagers of the earth, we don't really know what to expect, but we know, whatever it is, it is going to be spectacular."

The imager is a telescope, which looks off to the side of the heat shield, and will make 2-D images of the sun's corona as the spacecraft flies through. But like a medical CAT scan, the orbit of the spacecraft through the corona will enable 3-D images and a determination of the 3-D structure of the corona. The experiment actually will see the solar wind and provide 3-D images of clouds and shocks as they approach and pass the spacecraft. "We'll be flying through the structures that we've only seen from 100 million miles away. We'll be able to see all the phenomena (mass ejections, streamers, shocks, comets, and dust) up close. Other instruments will be able to measure the magnetic and electric fields and the plasma itself," explains Howard. This investigation complements instruments on the spacecraft by providing direct measurements of the plasma far away as well as near the spacecraft - the same plasma the other instruments sample.

The other four investigations chosen for the Solar Probe Plus mission include:

The Solar Wind Electrons Alphas and Protons Investigation will specifically count the most abundant particles in the solar wind -- electrons, protons and helium ions -- and measure their properties. The investigation also is designed to catch some of the particles in a special cup for direct analysis. (Smithsonian Astrophysical Observatory in Cambridge, Massachusetts)

The Fields Experiment will make direct measurements of electric and magnetic fields, radio emissions, and shock waves that course through the sun's atmospheric plasma. The experiment also serves as a giant dust detector, registering voltage signatures when specks of space dust hit the spacecraft's antenna. (University of California Space Sciences Laboratory in Berkeley, California)

The Integrated Science Investigation of the Sun consists of two instruments that will take an inventory of elements in the sun's atmosphere using a mass spectrometer to weigh and sort ions in the vicinity of the spacecraft. (Southwest Research Institute in San Antonio, Texas)

The Heliospheric Origins with Solar Probe Plus is led by Dr. Marco Velli who is the mission's observatory scientist, responsible for overseeing assembly of the spacecraft. He will ensure adjacent instruments do not interfere with one another and guide the overall science investigations after the probe enters the sun's atmosphere. (NASA's Jet Propulsion Laboratory in Pasadena, California)

The Solar Probe Plus mission is part of NASA's Living with a Star Program. The program is designed to understand aspects of the sun and Earth's space environment that affect life and society. The program is managed by NASA'S Goddard Space Flight Center in Greenbelt, Maryland, with oversight from NASA's Science Mission Directorate's Heliophysics Division. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is the prime contractor for the spacecraft.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil
http://www.nrl.navy.mil/media/news-releases/116-10r/

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>