Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Developed Cloak Hides Underwater Objects From Sonar

06.01.2011
In one University of Illinois lab, invisibility is a matter of now you hear it, now you don’t.

Led by mechanical science and engineering professor Nicholas Fang, Illinois researchers have demonstrated an acoustic cloak, a technology that renders underwater objects invisible to sonar and other ultrasound waves.

“We are not talking about science fiction. We are talking about controlling sound waves by bending and twisting them in a designer space,” said Fang, who also is affiliated with the Beckman Institute for Advanced Science and Technology. “This is certainly not some trick Harry Potter is playing with.”

While materials that can wrap sound around an object rather than reflecting or absorbing it have been theoretically possible for a few years, realization of the concept has been a challenge. In a paper accepted for publication in the journal Physical Review Letters, Fang’s team describe their working prototype, capable of hiding an object from a broad range of sound waves.

The cloak is made of metamaterial, a class of artificial materials that have enhanced properties as a result of their carefully engineered structure. Fang’s team designed a two-dimensional cylindrical cloak made of 16 concentric rings of acoustic circuits structured to guide sound waves. Each ring has a different index of refraction, meaning that sound waves vary their speed from the outer rings to the inner ones.

“Basically what you are looking at is an array of cavities that are connected by channels. The sound is going to propagate inside those channels, and the cavities are designed to slow the waves down,” Fang said. “As you go further inside the rings, sound waves gain faster and faster speed.”

Since speeding up requires energy, the sound waves instead propagate around the cloak’s outer rings, guided by the channels in the circuits. The specially structured acoustic circuits actually bend the sound waves to wrap them around the outer layers of the cloak.

The researchers tested their cloak’s ability to hide a steel cylinder. They submerged the cylinder in a tank with an ultrasound source on one side and a sensor array on the other, then placed the cylinder inside the cloak and watched it disappear from their sonar.

Curious to see if the hidden object’s structure played a role in the cloaking phenomenon, the researchers conducted trials with other objects of various shapes and densities.

“The structure of what you’re trying to hide doesn’t matter,” Fang said. “The effect is similar. After we placed the cloaked structure around the object we wanted to hide, the scattering or shadow effect was greatly reduced.”

An advantage of the acoustic cloak is its ability to cover a broad range of sound wavelengths. The cloak offers acoustic invisibility to ultrasound waves from 40 to 80 KHz, although with modification could theoretically be tuned to cover tens of megahertz.

“This is not just a single wavelength effect. You don’t have an invisible cloak that’s showing up just by switching the frequencies slightly,” Fang said. “The geometry is not theoretically scaled with wavelengths. The nice thing about the circuit element approach is that you can scale the channels down while maintaining the same wave propagation technology.”

Next, the researchers plan to explore how the cloaking technology could influence applications from military stealth to soundproofing to health care. For example, ultrasound and other acoustic imaging techniques are common in medical practice, but many things in the body can cause interference and mar the image. A metamaterial bandage or shield could effectively hide a troublesome area so the scanner could focus on the region of interest.

The cloaking technology also may affect nonlinear acoustic phenomena. One problem plaguing fast-moving underwater objects is cavitation, or the formation and implosion of bubbles. Fang and his group believe that they could harness their cloak’s abilities to balance energy in cavitation-causing areas, such as the vortex around a propeller.

Editor’s notes: To reach Nicholas Fang, call 217-265-8262; e-mail nicfang@illinois.edu. The paper, “Broadband Acoustic Cloak for Ultrasound Waves,” is available online at http://arxiv.org/pdf/1009.3310.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>