Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery could pave the way for spin-based computing

26.09.2014

Novel oxide-based magnetism follows electrical commands

Electricity and magnetism rule our digital world. Semiconductors process electrical information, while magnetic materials enable long-term data storage. A University of Pittsburgh research team has discovered a way to fuse these two distinct properties in a single material, paving the way for new ultrahigh density storage and computing architectures.

While phones and laptops rely on electricity to process and temporarily store information, long-term data storage is still largely achieved via magnetism. Discs coated with magnetic material are locally oriented (e.g. North or South to represent "1" and "0"), and each independent magnet can be used to store a single bit of information.

However, this information is not directly coupled to the semiconductors used to process information. Having a magnetic material that can store and process information would enable new forms of hybrid storage and processing capabilities.

Such a material has been created by the Pitt research team led by Jeremy Levy, a Distinguished Professor of Condensed Matter Physics in Pitt's Kenneth P. Dietrich School of Arts and Sciences and director of the Pittsburgh Quantum Institute.

Levy, other researchers at Pitt, and colleagues at the University of Wisconsin-Madison today published their work in Nature Communications, elucidating their discovery of a form of magnetism that can be stabilized with electric fields rather than magnetic fields.

Working with a material formed from a thick layer of one oxide—strontium titanate—and a thin layer of a second material—lanthanum aluminate—these researchers have found that the interface between these materials can exhibit magnetic behavior that is stable at room temperature. The interface is normally conducting, but by "chasing" away the electrons with an applied voltage (equivalent to that of two AA batteries), the material becomes insulating and magnetic.

The magnetic properties are detected using "magnetic force microscopy," an imaging technique that scans a tiny magnet over the material to gauge the relative attraction or repulsion from the magnetic layer.

The newly discovered magnetic properties come on the heels of a previous invention by Levy, so-called "Etch-a-Sketch Nanoelectronics" involving the same material. The discovery of magnetic properties can now be combined with ultra-small transistors, terahertz detectors, and single-electron devices previously demonstrated.

"This work is indeed very promising and may lead to a new type of magnetic storage," says Stuart Wolf, head of the nanoSTAR Institute at the University of Virginia. Though not an author on this paper, Wolf is widely regarded as a pioneer in the area of spintronics.

"Magnetic materials tend to respond to magnetic fields and are not so sensitive to electrical influences," Levy says. "What we have discovered is that a new family of oxide-based materials can completely change its behavior based on electrical input."

###

Joe Miksch, University of Pittsburgh News Services

[412-624-4356 (office); 412-997-0314 (cell); jmiksch@pitt.edu]

This discovery was supported by grants from the National Science Foundation, the Air Force Office of Scientific Research, and the Army Research Office.

Joe Miksch | Eurek Alert!
Further information:
http://www.pitt.edu/

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>