Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery could pave the way for spin-based computing

26.09.2014

Novel oxide-based magnetism follows electrical commands

Electricity and magnetism rule our digital world. Semiconductors process electrical information, while magnetic materials enable long-term data storage. A University of Pittsburgh research team has discovered a way to fuse these two distinct properties in a single material, paving the way for new ultrahigh density storage and computing architectures.

While phones and laptops rely on electricity to process and temporarily store information, long-term data storage is still largely achieved via magnetism. Discs coated with magnetic material are locally oriented (e.g. North or South to represent "1" and "0"), and each independent magnet can be used to store a single bit of information.

However, this information is not directly coupled to the semiconductors used to process information. Having a magnetic material that can store and process information would enable new forms of hybrid storage and processing capabilities.

Such a material has been created by the Pitt research team led by Jeremy Levy, a Distinguished Professor of Condensed Matter Physics in Pitt's Kenneth P. Dietrich School of Arts and Sciences and director of the Pittsburgh Quantum Institute.

Levy, other researchers at Pitt, and colleagues at the University of Wisconsin-Madison today published their work in Nature Communications, elucidating their discovery of a form of magnetism that can be stabilized with electric fields rather than magnetic fields.

Working with a material formed from a thick layer of one oxide—strontium titanate—and a thin layer of a second material—lanthanum aluminate—these researchers have found that the interface between these materials can exhibit magnetic behavior that is stable at room temperature. The interface is normally conducting, but by "chasing" away the electrons with an applied voltage (equivalent to that of two AA batteries), the material becomes insulating and magnetic.

The magnetic properties are detected using "magnetic force microscopy," an imaging technique that scans a tiny magnet over the material to gauge the relative attraction or repulsion from the magnetic layer.

The newly discovered magnetic properties come on the heels of a previous invention by Levy, so-called "Etch-a-Sketch Nanoelectronics" involving the same material. The discovery of magnetic properties can now be combined with ultra-small transistors, terahertz detectors, and single-electron devices previously demonstrated.

"This work is indeed very promising and may lead to a new type of magnetic storage," says Stuart Wolf, head of the nanoSTAR Institute at the University of Virginia. Though not an author on this paper, Wolf is widely regarded as a pioneer in the area of spintronics.

"Magnetic materials tend to respond to magnetic fields and are not so sensitive to electrical influences," Levy says. "What we have discovered is that a new family of oxide-based materials can completely change its behavior based on electrical input."

###

Joe Miksch, University of Pittsburgh News Services

[412-624-4356 (office); 412-997-0314 (cell); jmiksch@pitt.edu]

This discovery was supported by grants from the National Science Foundation, the Air Force Office of Scientific Research, and the Army Research Office.

Joe Miksch | Eurek Alert!
Further information:
http://www.pitt.edu/

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>