Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron star magnetic fields: not so turbulent?

07.05.2014

New findings could help advance understanding of matter at extreme densities

Neutron stars, the extraordinarily dense stellar bodies created when massive stars collapse, are known to host the strongest magnetic fields in the universe -- as much as a billion times more powerful than any man-made electromagnet. But some neutron stars are much more strongly magnetized than others, and this disparity has long puzzled astrophysicists.

Now, a study by McGill University physicists Konstantinos Gourgouliatos and Andrew Cumming sheds new light on the expected geometry of the magnetic field in neutron stars. The findings, published online April 29 in Physical Review Letters, could help scientists measure the mass and radius of these unusual stellar bodies, and thereby gain insights into the physics of matter at extreme densities.

Some previous theoretical studies have suggested that the magnetic field of a neutron star should break into smaller loops and dissipate as the star ages – a phenomenon known as “turbulent cascade.” Yet, there are several “middle-aged” neutron stars (roughly one million to a few million years old) that are known to have relatively strong magnetic fields, leaving scientists at a loss to reconcile the theoretical models with actual observations.

... more about:
»Astrophysique »Neutron »matter »navigate

To better understand how the magnetic field changes as a neutron star ages, Gourgouliatos and Cumming ran a series of computer simulations. These showed the magnetic field evolving rapidly at first, in line with previous predictions. But then the evolution took a surprising turn: in all the simulations, no matter what the magnetic field looked like when the neutron star was born, the field took on a particular structure and its evolution dramatically slowed. 

“A cascade in a magnetic field is akin to what happens when you add cream to your coffee and stir it: the cream rapidly gets broken up into pieces and mixes into the coffee,” Cumming explains. “The original prediction was that neutron star crusts would do the same to their magnetic fields; so if you could walk around on the surface with a compass trying to walk towards magnetic north, you would end up walking around in random directions. Instead, we find in these new simulations that the magnetic field actually remains quite simple in structure – as if the cream refused to mix into the coffee – and you could, indeed, use a compass to navigate around on the surface of the star.”

The McGill researchers call this final magnetic-field configuration the “Hall attractor” state, after the so-called Hall effect, which is thought by astrophysicists to drive magnetic field evolution in neutron-star crusts. “This result is also significant because it shows that the Hall effect, a phenomenon first discovered in terrestrial materials and which is thought to help weaken a magnetic field through turbulence, can actually lead to an attractor state with a stable magnetic-field structure,” Gourgouliatos says.

The research was supported by the Centre de Recherche en Astrophysique du Québec and the Natural Sciences and Engineering Research Council of Canada.

“Hall Attractor in Axially Symmetric Magnetic Fields in Neutron Star Crusts”, Konstantinos N. Gourgouliatos and Andrew Cumming, Physical Review Letters, published 29 April 2014.
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.171101

Contact Information

Contact: Chris Chipello
Organization: Media Relations Office
Office Phone: 514-398-4201

Chris Chipello | idw - Informationsdienst Wissenschaft
Further information:
http://www.mcgill.ca/newsroom/channels/news/neutron-star-magnetic-fields-not-so-turbulent-236547

Further reports about: Astrophysique Neutron matter navigate

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>