Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutron analysis reveals 'two doors down' superconductivity link

08.02.2011
Neutron scattering analysis of two families of iron-based materials suggests that the magnetic interactions thought responsible for high-temperature superconductivity may lie "two doors down": The key magnetic exchange pairings occur in a next-nearest-neighbor ordering of atoms, rather than adjacent atoms.

Researchers at the Department of Energy's Oak Ridge National Laboratory and the University of Tennessee, using the Spallation Neutron Source's ARCS Wide Angular Range Chopper Spectrometer, performed spin-wave studies of magnetically ordered iron chalcogenides. They based their conclusions on comparisons with previous spin-wave data on magnetically ordered pnictides, another class of iron-based superconductors.

"As we analyze the spectra, we find that even though the nearest neighbor exchange couplings between chalcogenide and pnictide atoms are different, the next nearest neighbor exchange couplings are closely similar," said Pengcheng Dai, who has a joint appointment with ORNL's Neutron Sciences Directorate and the University of Tennessee.

Dai referred to theories that have suggested second-nearest-neighbor couplings could be responsible for the widely acclaimed but poorly understood properties of high-temperature superconductors.

"There are theories suggesting that it's the second nearest neighbor that drives the superconductivity," he said. "Our discovery of similar next-nearest-neighbor couplings in these two iron-based systems suggests that superconductivity shares a common magnetic origin."

Oliver Lipscombe of the University of Tennessee, Dai and ORNL's Doug Abernathy used the ARCS time-of-flight instrument on the SNS to study spin waves of the chalcogenide iron-tellurium superconductor and compared these with iron pnictide superconductors. Scientists have been studying the iron-based superconductors since their discovery in 2008 to see if the dynamics behind their high-temperature superconducting properties -- in which electricity flows without resistance at temperatures well above absolute zero -- could help explain what was until recently thought to be exclusive to copper-oxide-based superconductors.

"Finding commonalities is always a good step when you're looking for a very basic understanding of a phenomenon like high-temperature superconductivity," said Abernathy, who is lead instrument scientist for the ARCS instrument.

The team's neutron scattering analysis of the materials was made possible by the high intensity of the neutron beams provided by the SNS, which is the world's most powerful pulsed neutron source. Neutrons, which carry no electric charge but can act as subatomic magnets, are well suited for studying atom-scale spin characteristics.

"Since the interactions in the high-temperature superconductors are so strong, measurement of these materials' spin waves requires beams of energetic neutrons that were unavailable to the research community at this intensity before the SNS," Abernathy said.

The work, which was funded by the DOE Office of Science, is published in Physical Review Letters.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov
http://www.ornl.gov/info/press_releases/get_press_release.cfm?ReleaseNumber=mr20110207-00

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>