Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA X-ray concept inspired from a roll of Scotch® tape

27.07.2012
The inspiration behind NASA scientist Maxim Markevitch's quest to build a highly specialized X-ray mirror using a never-before-tried technique comes from an unusual source: a roll of Scotch® tape.

Markevitch and a team of X-ray optics experts at NASA's Goddard Space Flight Center in Greenbelt, Md., have begun investigating the feasibility of fashioning a low-cost mirror from plastic tape and tightly rolling it like the sticky adhesive commonly found in most homes and offices.


Principal Investigator Maxim Markevitch is using R&D funding to pursue the feasibility of fashioning a low-cost X-ray mirror from plastic tape and tightly rolling it like the sticky adhesive ubiquitous in most homes and offices. The whiteboard drawing shows the shape of the X-ray mirror roll.

Credit: Credit: NASA/D. McCallum

"I remember looking at a roll of Scotch tape and thinking, 'was it possible to use the same design for capturing hard X-rays,'" Markevitch recalled. "I talked with a few people, and to my surprise, they didn't see any principal reasons why it couldn't be done."

With funding from NASA's Center Innovation Fund, the team now is pursuing Markevitch's "early-stage" idea and has already begun testing candidate materials that could be fashioned into a rolled mirror capable of collecting X-rays — in itself a challenging proposition. To capture these ever-elusive photons, the mirrors must be curved and nested inside a cylindrical optical assembly. The rounded geometry allows the high-energy light to graze their surfaces, much like a stone skimming the surface of a pond.

Motivating Markevitch is the fact that these highly specialized mirrors are time-consuming and expensive to build and assemble, despite efforts to dramatically reduce production costs. Making matters more demanding is the fact that X-ray observatories in the future likely will require much larger collecting areas, therefore requiring an even greater number of individual mirror segments that all must be nested, coated with layers of highly reflective materials, and perfectly coaligned inside their optical assemblies. "It's a lot of work fabricating these rigid shells and making sure they're properly aligned," he said.

The Science

The science Markevitch would like to pursue is one that would require a larger mirror. Over the past few decades, NASA has launched several X-ray observatories sensitive to lower-energy "soft X-rays," including the Chandra X-ray Observatory. They discovered and imaged the faint, diffuse X-ray signal from a variety of astrophysical sources dominated by thermal emission, such as galaxies and clusters of galaxies. Other missions, like NASA's Swift satellite, were sensitive to higher-energy gamma rays, but they lacked imaging capabilities.

"There remains a large and totally unexplored discovery space of faint, diffuse nonthermal astrophysical objects emitting at high X-ray energies," Markevitch said.

One class of objects waiting to be better understood is cosmic rays — highly energetic subatomic particles generated in deep space — that reside in galaxy clusters and other large-scale structure in the universe. Scientists believe that cosmic rays and the magnetic fields between galaxy clusters can alter the physics within galaxy clusters. A better understanding of these physics could reveal more about the birth and evolution of the cosmos, Markevitch said.

To study cosmic rays, however, observatories would have to be tuned to hard X-rays. Although NASA's recently launched Nuclear Spectroscopic Telescope Array (NuSTAR) and Japan's New X-ray Telescope, also known as Astro-H, are sensitive to hard X-rays, Markevitch said they only "will graze the surface of this discovery space." Because the signal is so faint, only an imaging X-ray telescope with a collecting area 30 times larger than that of NuSTAR, working with current and future radio telescopes, could do the job, Markevitch said.

"However, to our knowledge, nothing of the kind is planned or even proposed in the U.S. or elsewhere because of the cost something like this presents," he said.

The only solution then is developing a new technology that would dramatically reduce the cost of building X-ray optics and increase the size of the light-collecting area. "If we can build a mirror that's big enough, this might be the way to go," he said.

Under his research plan, Markevitch, Takashi Okajima, Will Zhang, and Peter Serlemitsos are acquiring and testing candidate tape that would be coated on one side with a multilayer of reflective material and then wound into a roll, forming a large number of densely packed nested shells that are spaced by the varying thickness of the tape. "The collecting surface is automatic, it's rolled, self-supporting, and already aligned," Markevitch said. Multiple rolls then would be placed in an optical assembly, providing a much larger collecting area, or, in other words, a larger mirror.

"Maxim's Scotch tape idea is in an early stage," Zhang said. "In the next year, we will know whether it has a chance of working."

If it does, it could prove "game-changing for hard X-ray astronomy," Markevitch said. "It could significantly reduce the cost of building large mirrors, bringing within reach the possibility of building a mirror with 10 to 30 times greater effective area than current X-ray telescopes."

Lori Keesey | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>