Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Recommend this page:
To (Recipient's email address)
Your name (Optional)
From (Your email address)
Message (Optional)
Datenschutz-Hinweis: Die Mailadressen werden von uns weder gespeichert noch an Dritte weitergegeben. Sie werden ausschließlich zu Übertragungszwecken verwendet.

NASA Widens 2014 Hurricane Research Mission

30.05.2014

During this year's Atlantic hurricane season, NASA is redoubling its efforts to probe the inner workings of hurricanes and tropical storms with two unmanned Global Hawk aircraft flying over storms and two new space-based missions.

NASA's airborne Hurricane and Severe Storm Sentinel or HS3 mission, will revisit the Atlantic Ocean for the third year in a row. HS3 is a collaborative effort that brings together several NASA centers with federal and university partners to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. The flights from Wallops Flight Facility in Virginia take place between Aug. 26 and Sept. 29 during the peak of the Atlantic hurricane season that runs from June 1 to Nov. 30. 

"This year we're going full-force into tropical cyclone research," said Scott Braun, HS3 mission principal investigator and research meteorologist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "We'll have two Global Hawks equipped with six instruments. The new NASA-JAXA Global Precipitation Measurement (GPM) Core Observatory will be providing much higher quality data than previously available on rain structure in tropical cyclones in all ocean basins. The surface-wind monitoring ISS-RapidScat instrument to be launched to the International Space Station this season will provide valuable information on surface winds in storms."

One of the remaining mysteries that HS3 is attempting to solve is the effect of the hot, dry and dusty Saharan Air Layer (SAL) in tropical storm formation and intensification. Some research points to SAL contributing to storm formation, while other research indicates SAL suppresses it. HS3 also will investigate the role of strong thunderstorms near the core of the storms as a possible driver of intensity change.   

... more about:
»Atlantic »Earth »GPM »HS3 »Hurricane »NASA »storms »structure »tropical »winds

This year NOAA, in addition to managing all of the dropsondes during the HS3 mission, will enable the mission to fly another week to better study tropical cyclones. A dropsonde is a device that measures winds, temperature and humidity, dropped from an aircraft. 

The NASA Global Hawks are unmanned aircraft that will be piloted remotely from the HS3 mission control at NASA's Wallops Flight Facility. Global Hawk aircraft are well-suited for hurricane investigations because they can fly for as long as 26 hours and fly above hurricanes at altitudes greater than 55,000 feet.

One Global Hawk will carry three instruments to examine the environment around the storms, including the Scanning High-resolution Interferometer Sounder (S-HIS), the Advanced Vertical Atmospheric Profiling System (AVAPS), also known as dropsondes, and the Cloud Physics Lidar (CPL).

The second Global Hawk will focus on the inner region of the storms to measure wind and precipitation, surface winds, and atmospheric temperature and humidity. It will carry the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) conically scanning Doppler radar, the Hurricane Imaging Radiometer (HIRAD), and the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) microwave sounder.

The GPM mission, launched Feb. 27, will provide rainfall measurements every three hours around the globe, and will complement the HS3 mission. Like GPM's predecessor, the Tropical Rainfall Measuring Mission, GPM will continue to provide insights into the dynamics of a storm, such as how the storm's structure changes over the life cycle of the storm, including intensification and decay stages, and how storm intensification may depend on the presence of deep thunderstorms, known as hot towers, near the eyewall. The GPM mission will extend coverage to higher latitudes and improve scientists' ability to evaluate how storms change in intensity and structure as they move into the extra-tropics.

The ISS-RapidScat instrument, managed by NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, is slated for launch to the International Space Station in August. RapidScat will measure ocean surface winds in Earth's tropics and mid-latitudes and will provide useful data for weather forecasting of marine storms. 

HS3’s project management is at NASA Ames Research Center, Mountain View, California - home of the Earth Science Projects Office (ESPO). Other participating NASA centers involved in the campaign include: Goddard, the Armstrong Flight Research Center in Edwards, California, Marshall Space Flight Center in Huntsville, Alabama, and JPL. 

The HS3 mission is funded by NASA Headquarters and overseen by NASA's Earth System Science Pathfinder Program at NASA's Langley Research Center in Hampton, Virginia, and is one of five large field campaigns operating under the Earth Venture program. The HS3 mission also involves collaborations with partners including the National Centers for Environmental Prediction, Naval Postgraduate School, Naval Research Laboratory, NOAA's Hurricane Research Division and Earth System Research Laboratory, Northrop Grumman Space Technology, National Center for Atmospheric Research, State University of New York at Albany, University of Maryland - Baltimore County, University of Wisconsin, and University of Utah.

NASA monitors Earth's vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth's interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

For more information about NASA's Earth science activities in 2014, visit:  http://www.nasa.gov/earthrightnow

Related Links:

HS3 Mission - www.nasa.gov/hs3
NASA Hurricane Research - www.nasa.gov/hurricane
NASA's Airborne Science Program - http://airbornescience.nasa.gov
GPM Mission - www.nasa.gov/gpm
Rapidscat - https://winds.jpl.nasa.gov/missions/RapidScat/
GPM Flickr photos - https://www.flickr.com/photos/gsfc/10860068536/in/set-72157637675525645
Globalhawk montage photos - http://www.nasa.gov/content/goddard/nasas-2013-hs3-mission-global-hawk-heads-home/#.U3ESg4WPMhU
What is NASA's HS3 Mission? video - https://espo.nasa.gov/missions/hs3/content/HS3_Mission_Overview

Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/nasa-widens-2014-hurricane-research-mission/#.U4d-2ShFtM1

Further reports about: Atlantic Earth GPM HS3 Hurricane NASA storms structure tropical winds

More articles from Physics and Astronomy:

nachricht Hubble observes one-of-a-kind star nicknamed 'Nasty'
22.05.2015 | NASA/Goddard Space Flight Center

nachricht Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents
22.05.2015 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>