Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA: Understanding the magnetic sun

01.02.2016

The surface of the sun writhes and dances. Far from the still, whitish-yellow disk it appears to be from the ground, the sun sports twisting, towering loops and swirling cyclones that reach into the solar upper atmosphere, the million-degree corona - but these cannot be seen in visible light. Then, in the 1950s, we got our first glimpse of this balletic solar material, which emits light only in wavelengths invisible to our eyes.

Once this dynamic system was spotted, the next step was to understand what caused it. For this, scientists have turned to a combination of real time observations and computer simulations to best analyze how material courses through the corona. We know that the answers lie in the fact that the sun is a giant magnetic star, made of material that moves in concert with the laws of electromagnetism.


(Illustration) This comparison shows the relative complexity of the solar magnetic field between January 2011 (left) and July 2014. In January 2011, three years after solar minimum, the field is still relatively simple, with open field lines concentrated near the poles. At solar maximum, in July 2014, the structure is much more complex, with closed and open field lines poking out all over - ideal conditions for solar explosions.

Credit: NASA/SVS

"We're not sure exactly where in the sun the magnetic field is created," said Dean Pesnell, a space scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "It could be close to the solar surface or deep inside the sun - or over a wide range of depths."

Getting a handle on what drives that magnetic system is crucial for understanding the nature of space throughout the solar system: The sun's magnetic field is responsible for everything from the solar explosions that cause space weather on Earth - such as auroras - to the interplanetary magnetic field and radiation through which our spacecraft journeying around the solar system must travel.

So how do we even see these invisible fields? First, we observe the material on the sun. The sun is made of plasma, a gas-like state of matter in which electrons and ions have separated, creating a super-hot mix of charged particles.

When charged particles move, they naturally create magnetic fields, which in turn have an additional effect on how the particles move. The plasma in the sun, therefore, sets up a complicated system of cause and effect in which plasma flows inside the sun - churned up by the enormous heat produced by nuclear fusion at the center of the sun - create the sun's magnetic fields. This system is known as the solar dynamo.

We can observe the shape of the magnetic fields above the sun's surface because they guide the motion of that plasma - the loops and towers of material in the corona glow brightly in EUV images. Additionally, the footpoints on the sun's surface, or photosphere, of these magnetic loops can be more precisely measured using an instrument called a magnetograph, which measures the strength and direction of magnetic fields.

Next, scientists turn to models. They combine their observations - measurements of the magnetic field strength and direction on the solar surface - with an understanding of how solar material moves and magnetism to fill in the gaps. Simulations such as the Potential Field Source Surface, or PFSS, model - shown in the accompanying video - can help illustrate exactly how magnetic fields undulate around the sun. Models like PFSS can give us a good idea of what the solar magnetic field looks like in the sun's corona and even on the sun's far side.

A complete understanding of the sun's magnetic field - including knowing exactly how it's generated and its structure deep inside the sun - is not yet mapped out, but scientists do know quite a bit. For one thing, the solar magnetic system is known to drive the approximately-11-year activity cycle on the sun.

With every eruption, the sun's magnetic field smooths out slightly until it reaches its simplest state. At that point the sun experiences what's known as solar minimum, when solar explosions are least frequent. From that point, the sun's magnetic field grows more complicated over time until it peaks at solar maximum, some 11 years after the previous solar maximum.

"At solar maximum, the magnetic field has a very complicated shape with lots of small structures throughout - these are the active regions we see," said Pesnell. "At solar minimum, the field is weaker and concentrated at the poles. It's a very smooth structure that doesn't form sunspots."

Take a look at the side-by-side comparison to see how the magnetic fields change, grew and subsided from January 2011 to July 2014. You can see that the magnetic field is much more concentrated near the poles in 2011, three years after solar minimum. By 2014, the magnetic field has become more tangled and disorderly, making conditions ripe for solar events like flares and coronal mass ejections.

###

Animation: http://www.nasa.gov/feature/goddard/2016/understanding-the-magnetic-sun

Karen Fox | EurekAlert!

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>