Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA seeing sprites

15.08.2012
High above the clouds during thunderstorms, some 50 miles above Earth a different kind of lightning dances. Bursts of red and blue light, known as "sprites," flash for a scant one thousandth of a second.

They are often only visible to those in flight above a storm, and happen so quickly you might not even see it unless you chance to be looking directly at it. One hard-to-reach place that gets a good view of sprites is the International Space Station. On April 30, 2012, astronauts on the ISS captured the signature red flash of a sprite, offering the world and researchers a rare opportunity to observe one.


A sprite glows red (inset) in this image captured by astronauts on the International Space Station on April 30, 2012. Credit: Credit: Image Science & Analysis Laboratory, NASA Johnson Space Center

Indeed, sprites are so hard to catch on film, that pilots had claimed to see them for almost a century before scientists at the University of Minnesota accidentally caught one on camera in July of 1989. Since then, researchers aboard planes have occasionally snapped a shot, but it continues to be difficult to methodically film them. So a group of scientists, along with help from Japan's NHK television, sought them out regularly for two weeks in the summer of 2011.

Filming at 10,000 frames per second on two separate jets, the team recorded some of the best movies of sprites ever taken – movies that can be used to study this poorly understood phenomenon and the forces that create them. By filming from two jets flying 12 miles apart, the team mapped out the 3-dimensional nature of the sprites. Ground-based measurements rounded out the picture.

"Seeing these are spectacular," says Hans C. Stenbaek-Nielsen, a geophysicist at the University of Alaska in Fairbanks, Alaska. "But we need the movies, because not only are they so fast that you could blink and miss them, but they emit most of their light in red, where the human eye is relatively blind."

During those two weeks, the scientists hopped into their planes in Denver, Colo. each evening and chased storm clouds. Just figuring out which direction to fly next was a full time job, assigned to a single person with a computer watching the weather systems. Once a plane found a hot zone of sprites, however, they often lucked into filming numerous sprites in a row. The sprite's first flash is usually followed by a break up into numerous streamers of light – figuring out what causes this divergence is one of the key things researchers will try to understand from these films.

The basic understanding of sprites is that they are related to lightning, in which a neutrally charged cloud discharges some of the electricity to ground. Normally negative charge is carried from the cloud to the ground, but about one out of every ten times it's positive charge -- and that leaves the top of the cloud negatively charged. With this one in ten chance, the electric field above the cloud is "just right" to produce the sprite, an electrical discharge 50 miles above the thunderstorm.

Typically the weather we experience on the ground is considered to be a separate phenomenon from the weather that goes on higher up in the atmosphere, in the area known as the mesosphere. The sprites show, however, that some fundamental science connects these two regions, opening interesting physics questions about the interchange of energy between them.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>