Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA seeing sprites

15.08.2012
High above the clouds during thunderstorms, some 50 miles above Earth a different kind of lightning dances. Bursts of red and blue light, known as "sprites," flash for a scant one thousandth of a second.

They are often only visible to those in flight above a storm, and happen so quickly you might not even see it unless you chance to be looking directly at it. One hard-to-reach place that gets a good view of sprites is the International Space Station. On April 30, 2012, astronauts on the ISS captured the signature red flash of a sprite, offering the world and researchers a rare opportunity to observe one.


A sprite glows red (inset) in this image captured by astronauts on the International Space Station on April 30, 2012. Credit: Credit: Image Science & Analysis Laboratory, NASA Johnson Space Center

Indeed, sprites are so hard to catch on film, that pilots had claimed to see them for almost a century before scientists at the University of Minnesota accidentally caught one on camera in July of 1989. Since then, researchers aboard planes have occasionally snapped a shot, but it continues to be difficult to methodically film them. So a group of scientists, along with help from Japan's NHK television, sought them out regularly for two weeks in the summer of 2011.

Filming at 10,000 frames per second on two separate jets, the team recorded some of the best movies of sprites ever taken – movies that can be used to study this poorly understood phenomenon and the forces that create them. By filming from two jets flying 12 miles apart, the team mapped out the 3-dimensional nature of the sprites. Ground-based measurements rounded out the picture.

"Seeing these are spectacular," says Hans C. Stenbaek-Nielsen, a geophysicist at the University of Alaska in Fairbanks, Alaska. "But we need the movies, because not only are they so fast that you could blink and miss them, but they emit most of their light in red, where the human eye is relatively blind."

During those two weeks, the scientists hopped into their planes in Denver, Colo. each evening and chased storm clouds. Just figuring out which direction to fly next was a full time job, assigned to a single person with a computer watching the weather systems. Once a plane found a hot zone of sprites, however, they often lucked into filming numerous sprites in a row. The sprite's first flash is usually followed by a break up into numerous streamers of light – figuring out what causes this divergence is one of the key things researchers will try to understand from these films.

The basic understanding of sprites is that they are related to lightning, in which a neutrally charged cloud discharges some of the electricity to ground. Normally negative charge is carried from the cloud to the ground, but about one out of every ten times it's positive charge -- and that leaves the top of the cloud negatively charged. With this one in ten chance, the electric field above the cloud is "just right" to produce the sprite, an electrical discharge 50 miles above the thunderstorm.

Typically the weather we experience on the ground is considered to be a separate phenomenon from the weather that goes on higher up in the atmosphere, in the area known as the mesosphere. The sprites show, however, that some fundamental science connects these two regions, opening interesting physics questions about the interchange of energy between them.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>