Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA seeing sprites

15.08.2012
High above the clouds during thunderstorms, some 50 miles above Earth a different kind of lightning dances. Bursts of red and blue light, known as "sprites," flash for a scant one thousandth of a second.

They are often only visible to those in flight above a storm, and happen so quickly you might not even see it unless you chance to be looking directly at it. One hard-to-reach place that gets a good view of sprites is the International Space Station. On April 30, 2012, astronauts on the ISS captured the signature red flash of a sprite, offering the world and researchers a rare opportunity to observe one.


A sprite glows red (inset) in this image captured by astronauts on the International Space Station on April 30, 2012. Credit: Credit: Image Science & Analysis Laboratory, NASA Johnson Space Center

Indeed, sprites are so hard to catch on film, that pilots had claimed to see them for almost a century before scientists at the University of Minnesota accidentally caught one on camera in July of 1989. Since then, researchers aboard planes have occasionally snapped a shot, but it continues to be difficult to methodically film them. So a group of scientists, along with help from Japan's NHK television, sought them out regularly for two weeks in the summer of 2011.

Filming at 10,000 frames per second on two separate jets, the team recorded some of the best movies of sprites ever taken – movies that can be used to study this poorly understood phenomenon and the forces that create them. By filming from two jets flying 12 miles apart, the team mapped out the 3-dimensional nature of the sprites. Ground-based measurements rounded out the picture.

"Seeing these are spectacular," says Hans C. Stenbaek-Nielsen, a geophysicist at the University of Alaska in Fairbanks, Alaska. "But we need the movies, because not only are they so fast that you could blink and miss them, but they emit most of their light in red, where the human eye is relatively blind."

During those two weeks, the scientists hopped into their planes in Denver, Colo. each evening and chased storm clouds. Just figuring out which direction to fly next was a full time job, assigned to a single person with a computer watching the weather systems. Once a plane found a hot zone of sprites, however, they often lucked into filming numerous sprites in a row. The sprite's first flash is usually followed by a break up into numerous streamers of light – figuring out what causes this divergence is one of the key things researchers will try to understand from these films.

The basic understanding of sprites is that they are related to lightning, in which a neutrally charged cloud discharges some of the electricity to ground. Normally negative charge is carried from the cloud to the ground, but about one out of every ten times it's positive charge -- and that leaves the top of the cloud negatively charged. With this one in ten chance, the electric field above the cloud is "just right" to produce the sprite, an electrical discharge 50 miles above the thunderstorm.

Typically the weather we experience on the ground is considered to be a separate phenomenon from the weather that goes on higher up in the atmosphere, in the area known as the mesosphere. The sprites show, however, that some fundamental science connects these two regions, opening interesting physics questions about the interchange of energy between them.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>