Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Names Telescope After Chicago Scientist

28.08.2008
NASA’s Gamma-ray Large Area Space Telescope has joined the constellation of satellites named after University of Chicago scientists. Today, NASA announced that the Gamma-ray Large Area Space Telescope will be called the Enrico Fermi Gamma-ray Space Telescope.

“This satellite will collect gamma rays from the most energetic regions of our galaxy and beyond,” said Simon Swordy, Director of the University of Chicago’s Enrico Fermi Institute. “Working in the Research Institutes building on Ellis Avenue in the late 1940s, Enrico Fermi produced the first quantitative ideas on how cosmic particles could reach the enormous energies needed to produce these cosmic-gamma rays. It is wonderful to hear that NASA has decided to dedicate this satellite to him.”

NASA launched the telescope on a Delta II rocket on June 11. The telescope’s mission is to collect data on black holes, gamma-ray bursts—the most powerful explosions in the universe—and other cosmic phenomena produced at extreme energies.

Fermi received the Nobel Prize in 1938 for his discovery of new radioactive elements produced by the addition of neutrons to the cores of atoms, and for the discovery of nuclear reactions brought about by slowly moving neutrons.

A member of the Chicago faculty from 1946 until his death in 1954, Fermi conducted pioneering research on the most powerful subatomic particle accelerator of its day. As a member of the Manhattan Project during World War II, he oversaw construction of the first nuclear reactor.

The Hubble Space Telescope, the Compton Gamma-ray Observatory and the Chandra X-ray Observatory preceded the Fermi Telescope.

The Hubble Telescope, launched aboard the space shuttle Discovery in 1990, is named for Edwin Hubble, who earned his bachelor’s degree at the University in 1910 and his doctorate in 1917. Hubble showed that other galaxies existed in the universe, and that the universe is expanding. These findings form the cornerstone of the big bang theory of the universe’s origin and opened the field of cosmology.

The Compton Gamma-ray Observatory, launched aboard the space shuttle Atlantis in 1991, is named for Arthur Holly Compton, who served on the University of Chicago faculty from 1923 to 1945. Compton earned the 1927 Nobel Prize in physics for his scattering experiment, which demonstrated that light has characteristics of both a wave and a particle. NASA deorbited the Compton Observatory in June 2000.

The Chandra X-ray Observatory, launched aboard the space shuttle Columbia in 1999, is named for pioneering University of Chicago astrophysicist Subrahmanyan Chandrasekhar. Chandrasekhar received the 1983 Nobel Prize in physics for his studies on the physical processes important to the structure and evolution of stars. He served on the Chicago faculty from 1937 until his death in 1995 at the age of 84. His major discoveries across the field of astrophysics spanned more than 60 years.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>