Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Chandra, Spitzer Study Suggests Black Holes Abundant Among The Earliest Stars

06.06.2013
By comparing infrared and X-ray background signals across the same stretch of sky, an international team of astronomers has discovered evidence of a significant number of black holes that accompanied the first stars in the universe.

Using data from NASA's Chandra X-ray Observatory and NASA's Spitzer Space Telescope, which observes in the infrared, researchers have concluded one of every five sources contributing to the infrared signal is a black hole.


The cosmic microwave background, shown at left in this illustration, is a flash of light that occurred when the young universe cooled enough for electrons and protons to form the first atoms. It contains slight temperature fluctuations that correspond to regions of slightly different densities, representing the seeds of all cosmic structure we see around us today. The universe then went dark for hundreds of millions of years until the first stars shone and the first black holes began accreting gas. A portion of the infrared and X-ray signals from these sources is preserved in the cosmic infrared background, or CIB, and its X-ray equivalent, the CXB. At least 20 percent of the structure in these backgrounds changes in concert, indicating that black hole activity was hundreds of times more intense in the early universe than it is today.
Credit: Karen Teramura, UHIfA

"Our results indicate black holes are responsible for at least 20 percent of the cosmic infrared background, which indicates intense activity from black holes feeding on gas during the epoch of the first stars," said Alexander Kashlinsky, an astrophysicist at NASA's Goddard Space Flight Center in Greenbelt, Md.

The cosmic infrared background (CIB) is the collective light from an epoch when structure first emerged in the universe. Astronomers think it arose from clusters of massive suns in the universe's first stellar generations, as well as black holes, which produce vast amounts of energy as they accumulate gas.

Even the most powerful telescopes cannot see the most distant stars and black holes as individual sources. But their combined glow, traveling across billions of light-years, allows astronomers to begin deciphering the relative contributions of the first generation of stars and black holes in the young cosmos. This was at a time when dwarf galaxies assembled, merged and grew into majestic objects like our own Milky Way galaxy.

"We wanted to understand the nature of the sources in this era in more detail, so I suggested examining Chandra data to explore the possibility of X-ray emission associated with the lumpy glow of the CIB," said Guenther Hasinger, director of the Institute for Astronomy at the University of Hawaii in Honolulu, and a member of the study team.

Hasinger discussed the findings Tuesday at the 222nd meeting of the American Astronomical Society in Indianapolis. A paper describing the study was published in the May 20 issue of The Astrophysical Journal.

The work began in 2005, when Kashlinsky and his colleagues studying Spitzer observations first saw hints of a remnant glow. The glow became more obvious in further Spitzer studies by the same team in 2007 and 2012. The 2012 investigation examined a region known as the Extended Groth Strip, a single well-studied slice of sky in the constellation Bootes. In all cases, when the scientists carefully subtracted all known stars and galaxies from the data, what remained was a faint, irregular glow. There is no direct evidence this glow is extremely distant, but telltale characteristics lead researchers to conclude it represents the CIB.

In 2007, Chandra took especially deep exposures of the Extended Groth Strip as part of a multiwavelength survey. Along a strip of sky slightly larger than the full moon, the deepest Chandra observations overlap with the deepest Spitzer observations. Using Chandra observations, lead researcher Nico Cappelluti, an astronomer with the National Institute of Astrophysics in Bologna, Italy, produced X-ray maps with all of the known sources removed in three wavelength bands. The result, paralleling the Spitzer studies, was a faint, diffuse X-ray glow that constitutes the cosmic X-ray background (CXB).

Comparing these maps allowed the team to determine whether the irregularities of both backgrounds fluctuated independently or in concert. Their detailed study indicates fluctuations at the lowest X-ray energies are consistent with those in the infrared maps.

"This measurement took us some five years to complete and the results came as a great surprise to us," said Cappelluti, who also is affiliated with the University of Maryland, Baltimore County in Baltimore.

The process is similar to standing in Los Angeles while looking for signs of fireworks in New York. The individual pyrotechnics would be too faint to see, but removing all intervening light sources would allow the detection of some unresolved light. Detecting smoke would strengthen the conclusion at least part of this signal came from fireworks.

In the case of the CIB and CXB maps, portions of both infrared and X-ray light seem to come from the same regions of the sky. The team reports black holes are the only plausible sources that can produce both energies at the intensities required. Regular star-forming galaxies, even those that vigorously form stars, cannot do this.

By teasing out additional information from this background light, the astronomers are providing the first census of sources at the dawn of structure in the universe.

"This is an exciting and surprising result that may provide a first look into the era of initial galaxy formation in the universe," said another contributor to the study, Harvey Moseley, a senior astrophysicist at Goddard. "It is essential that we continue this work and confirm it."

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. Data are archived at the Chandra X-ray Center in Cambridge.

NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., manages the Spitzer Space Telescope mission. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology (Caltech) in Pasadena. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

Francis Reddy
NASA's Goddard Space Flight Center, Greenbelt, Md.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/universe/features/abundant-black-holes.html

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>