Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's LRO Sees GRAIL's Explosive Farewell

20.03.2013
Many spacecraft just fade away, drifting silently through space after their mission is over, but not GRAIL. NASA's twin GRAIL (Gravity Recovery and Interior Laboratory) spacecraft went out in a blaze of glory Dec. 17, 2012, when they were intentionally crashed into a mountain near the moon's north pole.

The successful mission to study the moon's interior took the plunge to get one last bit of science: by kicking up a cloud of dust and gas with each impact, researchers hoped to discover more about the moon's composition. However, with the moon about 380,000 kilometers (over 236,000 miles) away from Earth, the impact plumes would be difficult to observe from here.

Fortunately, GRAIL had company –- NASA's Lunar Reconnaissance Orbiter (LRO) is orbiting the moon as well, busily making high-resolution maps of the lunar surface. With just three weeks notice, the LRO team scrambled to get LRO in the right place at the right time to witness GRAIL's fiery finale.

"We were informed by the GRAIL team about three weeks prior to the impact exactly where the impact site would be," said LRO Project Scientist John Keller of NASA's Goddard Space Flight Center in Greenbelt, Md. "The GRAIL team's focus was on obtaining the highest resolution gravity measurements possible from the last few orbits of the GRAIL spacecraft, which led to uncertainty in the ultimate impact site until relatively late."

LRO is in a low orbit, only about 100 miles from the lunar surface at the time of the impact, and variations in gravity from massive features like lunar mountains tug on the spacecraft, altering its orbit. "We had planned a station-keeping maneuver – a periodic adjustment to the orbit to prevent the spacecraft from hitting the lunar surface -- a few days before the GRAIL impact," Keller said. "I asked the Flight Dynamics folks here at Goddard if they could combine the station-keeping maneuver with a phasing maneuver – firing the engines to slightly speed up or slow down the spacecraft so it is in the right place at the right time to see the impact. They said it didn’t really work; we'd have to do another station-keeping maneuver to compensate. Based on this, we were leaning against observing this impact because we were going to observe another lunar impact to end the European Space Agency's successful Herschel mission. That impact would have created a much larger plume because the Herschel spacecraft is more massive than GRAIL. However, ESA decided against the collision, so we went with the impact we had."

"By this time, we had lost about a week, and any time we fire the engines on LRO, mission safety requires us to schedule communications coverage from NASA's Deep Space Network," said Keller. Since so many spacecraft rely on the DSN, it's not easy to schedule with little notice.

"However, we had already planned the station-keeping maneuver, so we had already scheduled the DSN coverage," said Keller. "We postponed the station keeping until April 29, and the Flight Dynamics team turned on a dime, making the station-keeping maneuver into a phasing maneuver so we could observe the impact."

The site was in shadow at the time of the impact, so the LRO team had to wait until the plumes rose high enough to be in sunlight before making the observation. The Lyman Alpha Mapping Project (LAMP), an ultraviolet imaging spectrograph on board the spacecraft, saw mercury and enhancements of atomic hydrogen in the plume.

"The mercury observation is consistent with what the LRO team saw from the LCROSS impact in October 2009," said Keller. "LCROSS (Lunar CRater Observation and Sensing Satellite) saw significant amounts of mercury, but the LCROSS site was at the bottom of the moon's Cabeus crater which hasn't seen sunlight for more than a billion years and is therefore extremely cold."

Mercury is a volatile, or easily vaporized, substance. Scientists propose that it could accumulate in cold, permanently shadowed craters like the one targeted for the LCROSS impact, but it was a surprise to see that it was also in an area that gets regular sunlight. "The issue for the GRAIL impact was not so much that mercury was found – you would expect it to be present as an element from the moon's formation, just like it is found on Earth," said Keller. "Rather, it is still reasonably concentrated near the surface instead of being driven off in an area where, for a very long time, the surface has been completely exposed to the space environment, including heat from the Sun, impacts from microscopic meteorites, and radiation."

"These new results help us continue to understand the nature of volatiles near the lunar poles," says Kurt Retherford, LAMP principal investigator at Southwest Research Institute, San Antonio, Texas. "In the last four years we have begun to understand that the amount of water ice near the polar regions is higher than previously thought. In addition to direct measurements of water from the LCROSS impact plume there were several other volatile species detected in the Cabeus crater cold-trapping region, including mercury atoms and hydrogen (H2) molecules detected with the LAMP instrument. While our results are still very new, our thinking is that the mercury detected by LAMP from the GRAIL site might be related to an enhancement at the poles caused by mercury atoms generally hopping across the surface and eventually migrating toward the colder polar regions. The detection of hydrogen atoms from the GRAIL impact plumes compared with H2 molecules in the LCROSS impact plume might tell us more about hydrogen and/or water near the poles, but this is a work in progress."

"This gives insight into how volatile material is transported around the moon," adds Keller. "It gives us a data point that helps constrain models of volatile transport, especially for models that describe how volatile material can get transported from warm to cold areas on the moon."

LRO's Lunar Reconnaissance Orbiter Camera (LROC) was able to make an image of the craters from the GRAIL impacts despite their relatively small size.

"The two spacecraft were relatively small -- cubes about the size of a washing machine with a mass of about 200 kg (440 lbs.) each at the time of impact," said Mark Robinson, LROC principal investigator at Arizona State University's School of Earth and Space Sciences, Tempe, Ariz. "When they were launched, the individual spacecraft mass was slightly more than 300 kg (661 lbs.), but each consumed just over 100 kg of fuel during the mission. The spacecraft were traveling about 6,070 kilometers per hour (3,771 mph) when they hit the surface. Both craters are relatively small, perhaps 4 to 6 meters (about 13 to 20 feet) in diameter and both have faint, dark, ejecta patterns, which is unusual. Fresh impact craters on the moon are typically bright, but these may be dark due to spacecraft material being mixed with the ejecta."

"Both impact sites lie on the southern slope of an unnamed massif (mountain) that lies south of the crater Mouchez and northeast of the crater Philolaus," adds Robinson. "The massif stands as much as 2,500 meters (about 8,202 feet) above the surrounding plains. The impact sites are at an elevation of about 700 meters (around 2,296 feet) and 1,000 meters (3,281 feet), respectively, about 500 to 800 meters (approximately 1,640 to 2,625 feet) below the summit. The two impact craters are about 2,200 meters (roughly 7,218 feet) apart. GRAIL B (renamed Flow) impacted about 30 seconds after GRAIL A (Ebb) at a site to the west and north of GRAIL A."

"The LRO spacecraft team, with much help and input from the GRAIL navigation team, did an excellent job of tailoring the timing of the LRO spacecraft's passage nearest the impact site to coincide with the impact events and needed delays for the plumes to rise up into sunlight," said Retherford. "Our two spacecraft teams communicated well with one another, which was crucial to making this coordinated observation a success."

LRO complemented the GRAIL mission in other ways as well. LRO's Diviner lunar radiometer observed the impact site and confirmed that the amount of heating of the surface there by the relatively small GRAIL spacecraft was within expectations. LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument bounced laser pulses off the surface to build up a precise map of the lunar terrain, including the three-dimensional structure of features like mountains and craters. "Combining the LRO LOLA topography map with GRAIL's gravity map yields some very interesting results," said Keller. "You expect that areas with mountains will have a little stronger gravity, while features like craters will have a little less. However, when you subtract out the topography, you get another map that reveals gravity differences that are not tied to the surface. It gives insight into structures deeper in the moon's interior."

The research was funded by the LRO mission, currently under NASA's Science Mission Directorate at NASA Headquarters in Washington. LRO is managed by NASA's Goddard Space Flight Center in Greenbelt, Md.

Nancy Neal-Jones / Bill Steigerwald
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-286-0039 / 5017
Nancy.N.Jones@nasa.gov / William.A.Steigerwald@nasa.gov

Nancy Neal-Jones | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/LRO/news/grail-results.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>