Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Fermi Mission, Namibia's HESS Telescopes Explore a Blazar

20.03.2009
An international team of astrophysicists using telescopes on the ground and in space have uncovered surprising changes in radiation emitted by an active galaxy.

The picture that emerges from these first-ever simultaneous observations with optical, X-ray and new-generation gamma-ray telescopes is much more complex than scientists expected and challenges current theories of how the radiation is generated.

The galaxy in question is PKS 2155-304, a type of object known as a "blazar." Like many active galaxies, a blazar emits oppositely directed jets of particles traveling near the speed of light as matter falls into a central supermassive black hole; this process is not well understood. In the case of blazars, the galaxy is oriented such that we're looking right down the jet.

PKS 2155-304 is located 1.5 billion light-years away in the southern constellation of Piscis Austrinus and is usually a detectable but faint gamma-ray source. But when its jet undergoes a major outburst, as it did in 2006, the galaxy can become the brightest source in the sky at the highest gamma-ray energies scientists can detect -- up to 50 trillion times the energy of visible light. Even from strong sources, only about one gamma ray this energetic strikes a square yard at the top of Earth's atmosphere each month.

Atmospheric absorption of one of these gamma rays creates a short-lived shower of subatomic particles. As these fast-moving particles rush through the atmosphere, they produce a faint flash of blue light. The High Energy Stereoscopic System (H.E.S.S), an array of telescopes located in Namibia, captured these flashes from PKS 2155-304.

Gamma rays at lower energies were detected directly by the Large Area Telescope (LAT) aboard NASA's orbiting Fermi Gamma-ray Space Telescope. "The launch of Fermi gives us the opportunity to measure this powerful galaxy across as many wavelengths as possible for the first time," says Werner Hofmann, spokesperson for the H.E.S.S. team at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany.

With the gamma-ray regime fully covered, the team turned to NASA's Swift and Rossi X-ray Timing Explorer (RXTE) satellites to provide data on the galaxy's X-ray emissions. Rounding out the wavelength coverage was the H.E.S.S. Automatic Telescope for Optical Monitoring, which recorded the galaxy's activity in visible light.

Between August 25 and September 6, 2008, the telescopes monitored PKS 2155-304 in its quiet, non-flaring state. The results of the 12-day campaign are surprising. During flaring episodes of this and other blazars, the X- and gamma-ray emission rise and fall together. But it doesn't happen this way when PKS 2155-304 is in its quiet state -- and no one knows why.

What's even stranger is that the galaxy's visible light rises and falls with its gamma-ray emission. "It's like watching a blowtorch where the highest temperatures and the lowest temperatures change in step, but the middle temperatures do not," says Berrie Giebels, an astrophysicist at France's École Polytechnique who works with both the H.E.S.S. and Fermi LAT teams.

"Astronomers are learning that the various constituents of the jets in blazars interact in fairly complicated ways to produce the radiation that we observe," says Fermi team member Jim Chiang at Stanford University, Calif. "These observations may contain the first clues to help us untangle what's really going on deep in the heart of a blazar."

The findings have been submitted to The Astrophysical Journal.

The H.E.S.S. team includes scientists from Germany, France, the United Kingdom, Poland, the Czech Republic, Ireland, Armenia, South Africa and Namibia. The Fermi mission is an astrophysics and particle physics partnership, developed by NASA in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/GLAST/news/blazar.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>