Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Fermi Mission, Namibia's HESS Telescopes Explore a Blazar

20.03.2009
An international team of astrophysicists using telescopes on the ground and in space have uncovered surprising changes in radiation emitted by an active galaxy.

The picture that emerges from these first-ever simultaneous observations with optical, X-ray and new-generation gamma-ray telescopes is much more complex than scientists expected and challenges current theories of how the radiation is generated.

The galaxy in question is PKS 2155-304, a type of object known as a "blazar." Like many active galaxies, a blazar emits oppositely directed jets of particles traveling near the speed of light as matter falls into a central supermassive black hole; this process is not well understood. In the case of blazars, the galaxy is oriented such that we're looking right down the jet.

PKS 2155-304 is located 1.5 billion light-years away in the southern constellation of Piscis Austrinus and is usually a detectable but faint gamma-ray source. But when its jet undergoes a major outburst, as it did in 2006, the galaxy can become the brightest source in the sky at the highest gamma-ray energies scientists can detect -- up to 50 trillion times the energy of visible light. Even from strong sources, only about one gamma ray this energetic strikes a square yard at the top of Earth's atmosphere each month.

Atmospheric absorption of one of these gamma rays creates a short-lived shower of subatomic particles. As these fast-moving particles rush through the atmosphere, they produce a faint flash of blue light. The High Energy Stereoscopic System (H.E.S.S), an array of telescopes located in Namibia, captured these flashes from PKS 2155-304.

Gamma rays at lower energies were detected directly by the Large Area Telescope (LAT) aboard NASA's orbiting Fermi Gamma-ray Space Telescope. "The launch of Fermi gives us the opportunity to measure this powerful galaxy across as many wavelengths as possible for the first time," says Werner Hofmann, spokesperson for the H.E.S.S. team at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany.

With the gamma-ray regime fully covered, the team turned to NASA's Swift and Rossi X-ray Timing Explorer (RXTE) satellites to provide data on the galaxy's X-ray emissions. Rounding out the wavelength coverage was the H.E.S.S. Automatic Telescope for Optical Monitoring, which recorded the galaxy's activity in visible light.

Between August 25 and September 6, 2008, the telescopes monitored PKS 2155-304 in its quiet, non-flaring state. The results of the 12-day campaign are surprising. During flaring episodes of this and other blazars, the X- and gamma-ray emission rise and fall together. But it doesn't happen this way when PKS 2155-304 is in its quiet state -- and no one knows why.

What's even stranger is that the galaxy's visible light rises and falls with its gamma-ray emission. "It's like watching a blowtorch where the highest temperatures and the lowest temperatures change in step, but the middle temperatures do not," says Berrie Giebels, an astrophysicist at France's École Polytechnique who works with both the H.E.S.S. and Fermi LAT teams.

"Astronomers are learning that the various constituents of the jets in blazars interact in fairly complicated ways to produce the radiation that we observe," says Fermi team member Jim Chiang at Stanford University, Calif. "These observations may contain the first clues to help us untangle what's really going on deep in the heart of a blazar."

The findings have been submitted to The Astrophysical Journal.

The H.E.S.S. team includes scientists from Germany, France, the United Kingdom, Poland, the Czech Republic, Ireland, Armenia, South Africa and Namibia. The Fermi mission is an astrophysics and particle physics partnership, developed by NASA in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/GLAST/news/blazar.html

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>