Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoneedle is small in size, but huge in applications

29.04.2009
Researchers at the University of Illinois have developed a membrane-penetrating nanoneedle for the targeted delivery of one or more molecules into the cytoplasm or the nucleus of living cells. In addition to ferrying tiny amounts of cargo, the nanoneedle can also be used as an electrochemical probe and as an optical biosensor.

“Nanoneedle-based delivery is a powerful new tool for studying biological processes and biophysical properties at the molecular level inside living cells,” said Min-Feng Yu, a professor of mechanical science and engineering and corresponding author of a paper accepted for publication in Nano Letters, and posted on the journal’s Web site.

In the paper, Yu and collaborators describe how they deliver, detect and track individual fluorescent quantum dots in a cell’s cytoplasm and nucleus. The quantum dots can be used for studying molecular mechanics and physical properties inside cells.

To create a nanoneedle, the researchers begin with a rigid but resilient boron-nitride nanotube. The nanotube is then attached to one end of a glass pipette for easy handling, and coated with a thin layer of gold. Molecular cargo is then attached to the gold surface via “linker” molecules. When placed in a cell’s cytoplasm or nucleus, the bonds with the linker molecules break, freeing the cargo.

With a diameter of approximately 50 nanometers, the nanoneedle introduces minimal intrusiveness in penetrating cell membranes and accessing the interiors of live cells.

The delivery process can be precisely controlled, monitored and recorded – goals that have not been achieved in prior studies.

“The nanoneedle provides a mechanism by which we can quantitatively examine biological processes occurring within a cell’s nucleus or cytoplasm,” said Yang Xiang, a professor of molecular and integrative physiology and a co-author of the paper. “By studying how individual proteins and molecules of DNA or RNA mobilize, we can better understand how the system functions as a whole.”

The ability to deliver a small number of molecules or nanoparticles into living cells with spatial and temporal precision may make feasible numerous new strategies for biological studies at the single-molecule level, which would otherwise be technically challenging or even impossible, the researchers report.

“Combined with molecular targeting strategies using quantum dots and magnetic nanoparticles as molecular probes, the nanoneedle delivery method can potentially enable the simultaneous observation and manipulation of individual molecules,” said Ning Wang, a professor of mechanical science and engineering and a co-author of the paper.

Beyond delivery, the nanoneedle-based approach can also be extended in many ways for single-cell studies, said Yu, who also is a researcher at the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems. “Nanoneedles can be used as electrochemical probes and as optical biosensors to study cellular environments, stimulate certain types of biological sequences, and examine the effect of nanoparticles on cellular physiology.”

With Wang, Xiang and Yu, co-authors of the paper are graduate student Kyungsuk Yum and postdoctoral research associate Sungsoo Na. Yu and Wang are affiliated with the university’s Beckman Institute. Wang is also affiliated with the department of bioengineering and with the university’s Micro and Nanotechnology Laboratory.

The Grainger Foundation, National Science Foundation and National Institutes of Health funded the work.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/09/0428nanoneedles.html

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>