Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano magnets arise at 2-D boundaries

15.11.2013
When you squeeze atoms, you don't get atom juice. You get magnets.

According to a new theory by Rice University scientists, imperfections in certain two-dimensional materials create the conditions by which nanoscale magnetic fields arise.

Calculations by the lab of Rice theoretical physicist Boris Yakobson show these imperfections, called grain boundaries, in two-dimensional semiconducting materials known as dichalcogenides can be magnetic. This may lead to new strategies for the growing field of spintronics, which takes advantage of the intrinsic spin of electrons and their associated magnetic fields for electronic and computing devices.

The discovery by Yakobson, lead author Zhuhua Zhang and their colleagues was reported online this week in the American Chemical Society journal ACS Nano.

Dichalcogenides are hybrids that combine transition metal and chalcogen atoms, which include sulfur, selenium and tellurium. The Yakobson group focused on semiconducting molybdenum disulfide (MDS) that, like atom-thick graphene, can be grown via chemical vapor deposition (CVD), among other methods. In a CVD furnace, atoms arrange themselves around a catalyst seed into familiar hexagonal patterns; however, in the case of MDS, sulfur atoms in the lattice alternately float above and below the layer of molybdenum.

When two growing blooms meet, they're highly unlikely to line up, so the atoms find a way to connect along the border, or grain boundary. Instead of regular hexagons, the atoms are forced to find equilibrium by forming adjoining rings known as dislocations, with either five-plus-seven nodes or four-plus-eight nodes.

In graphene, which is generally considered the strongest material on Earth, these dislocations are weak points. But in MDS or other dichalcogenides, they have unique properties.

"It doesn't matter how you grow them," Yakobson said. "These misoriented areas eventually collide, and that's where you find topological defects. It turns out that – and I like this mechanistic metaphor – they squeeze magnetism out of nonmagnetic material."

In previous work, Yakobson found dislocations create atom-width conducting lines and dreidel-shaped polyhedra in MDS. This time, the team dug deeper to find that dislocation cores turn magnetic where they force spinning electrons to align in ways that don't cancel each other out, as they do in a flawless lattice. The strength of the magnets depends on the angle of the boundary and rises with the number of dislocations necessary to keep the material energetically stable.

"Every electron has charge and spin, both of which can carry information," Zhang said. "But in conventional transistors, we only exploit the charge, as in field-effect transistors. For newly emerged spintronic devices, we need to control both charge and spin for enhanced efficiency and enriched functions."

"Our work suggests a new degree of freedom -- a new controlling knob -- for electronics that use MDS," Yakobson said. "The ability to control the magnetic properties of this 2-D material makes it superior to graphene in certain respects."

He said the dislocation rings of four and eight atoms are not energetically favored in graphene and unlikely to occur there. But in the materials that mix two elements, certain grain boundary configurations will very likely create conditions where similar elements, wishing to avoid contact with each other, will instead bond with their chemical opposites.

"The system avoids mono-elemental bonds," Yakobson said. "The chemistry doesn't like it, so four-eight offers a benefit." Those defects are also the strongest sources of magnetism at certain grain boundary angles, he said; at some angles, the boundaries become ferromagnetic.

The team proved its theory through computer models designed to isolate and control the effects of the nanoribbons' edges and grain boundary dipoles that could skew the results. They also determined that grain boundary angles between 13 and 32 degrees force a progressive overlap between the dislocations' spins. With sufficient overlap, the spins become magnetically coupled and broaden into electronic bands that support spin-polarized charge transport along the boundary.

Now, Yakobson said, "The challenge is to find a way to experimentally detect these things. It's quite difficult to resolve it at this spatial resolution, especially when some of the experimental methods, like electron beams, would destroy the material."

Co-authors of the paper are Rice postdoctoral researcher Xiaolong Zou and Vincent Crespi, distinguished professor of physics, materials science and engineering, and chemistry at The Pennsylvania State University. Yakobson is Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science, a professor of chemistry and a member of the Richard E. Smalley Institute for Nanoscale Science and Technology.

A U.S. Army Research Office Multidiscipline University Research Initiative grant, the National Science Foundation and the Robert Welch Foundation supported the research. Computations were performed on the Data Analysis and Visualization Cyberinfrastructure supercomputer administered by Rice's Ken Kennedy Institute for Information Technology.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nn4052887

This news release can be found online at http://news.rice.edu/2013/11/13/nano-magnets-arise-at-2-d-boundaries/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Yakobson Research Group: http://biygroup.blogs.rice.edu
Images for download:

http://news.rice.edu/wp-content/uploads/2013/11/1118_GRAIN-1-web.jpg
Rice University theorists have discovered magnetic fields (blue) are created at grain boundaries in two-dimensional dichalcogenides. Dislocations along these boundaries, where atoms are thrown out of their regular hexagonal patterns, force electron spins into alignments that favor magnetism. (Credit: Zhuhua Zhang/Rice University)

http://news.rice.edu/wp-content/uploads/2013/11/1118_GRAIN-2-web.jpg

Atomic dislocations can become magnetically charged when two-dimensional sheets of molybdenum disulfide and other dichalcogenides meet at an angle, according to calculations by theorists at Rice University. The grain boundaries force atoms out of their hexagonal patterns (left) and keep electron spins from canceling each other out, creating nanoscale magnetic fields (right, in blue) in the process. (Credit: Zhuhua Zhang/Rice University)

http://news.rice.edu/wp-content/uploads/2013/11/1118_GRAIN-3-web.jpg

In a perfect sheet of molybdenum disulfide, at left, sulfur (yellow) atoms and molybdenum (blue) atoms appear in a perfect hexagonal pattern when seen from above, though the sulfur atoms float just above and below the molybdenum layer. When two sheets join at an angle, right, dislocations disrupt the hexagons. At those points, according to new research at Rice University, magnetic fields can form. The discovery may boost research into spintronics for electronics and computing. (Credit: Zhuhua Zhang/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRiceU.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>