Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nano magnets arise at 2-D boundaries

When you squeeze atoms, you don't get atom juice. You get magnets.

According to a new theory by Rice University scientists, imperfections in certain two-dimensional materials create the conditions by which nanoscale magnetic fields arise.

Calculations by the lab of Rice theoretical physicist Boris Yakobson show these imperfections, called grain boundaries, in two-dimensional semiconducting materials known as dichalcogenides can be magnetic. This may lead to new strategies for the growing field of spintronics, which takes advantage of the intrinsic spin of electrons and their associated magnetic fields for electronic and computing devices.

The discovery by Yakobson, lead author Zhuhua Zhang and their colleagues was reported online this week in the American Chemical Society journal ACS Nano.

Dichalcogenides are hybrids that combine transition metal and chalcogen atoms, which include sulfur, selenium and tellurium. The Yakobson group focused on semiconducting molybdenum disulfide (MDS) that, like atom-thick graphene, can be grown via chemical vapor deposition (CVD), among other methods. In a CVD furnace, atoms arrange themselves around a catalyst seed into familiar hexagonal patterns; however, in the case of MDS, sulfur atoms in the lattice alternately float above and below the layer of molybdenum.

When two growing blooms meet, they're highly unlikely to line up, so the atoms find a way to connect along the border, or grain boundary. Instead of regular hexagons, the atoms are forced to find equilibrium by forming adjoining rings known as dislocations, with either five-plus-seven nodes or four-plus-eight nodes.

In graphene, which is generally considered the strongest material on Earth, these dislocations are weak points. But in MDS or other dichalcogenides, they have unique properties.

"It doesn't matter how you grow them," Yakobson said. "These misoriented areas eventually collide, and that's where you find topological defects. It turns out that – and I like this mechanistic metaphor – they squeeze magnetism out of nonmagnetic material."

In previous work, Yakobson found dislocations create atom-width conducting lines and dreidel-shaped polyhedra in MDS. This time, the team dug deeper to find that dislocation cores turn magnetic where they force spinning electrons to align in ways that don't cancel each other out, as they do in a flawless lattice. The strength of the magnets depends on the angle of the boundary and rises with the number of dislocations necessary to keep the material energetically stable.

"Every electron has charge and spin, both of which can carry information," Zhang said. "But in conventional transistors, we only exploit the charge, as in field-effect transistors. For newly emerged spintronic devices, we need to control both charge and spin for enhanced efficiency and enriched functions."

"Our work suggests a new degree of freedom -- a new controlling knob -- for electronics that use MDS," Yakobson said. "The ability to control the magnetic properties of this 2-D material makes it superior to graphene in certain respects."

He said the dislocation rings of four and eight atoms are not energetically favored in graphene and unlikely to occur there. But in the materials that mix two elements, certain grain boundary configurations will very likely create conditions where similar elements, wishing to avoid contact with each other, will instead bond with their chemical opposites.

"The system avoids mono-elemental bonds," Yakobson said. "The chemistry doesn't like it, so four-eight offers a benefit." Those defects are also the strongest sources of magnetism at certain grain boundary angles, he said; at some angles, the boundaries become ferromagnetic.

The team proved its theory through computer models designed to isolate and control the effects of the nanoribbons' edges and grain boundary dipoles that could skew the results. They also determined that grain boundary angles between 13 and 32 degrees force a progressive overlap between the dislocations' spins. With sufficient overlap, the spins become magnetically coupled and broaden into electronic bands that support spin-polarized charge transport along the boundary.

Now, Yakobson said, "The challenge is to find a way to experimentally detect these things. It's quite difficult to resolve it at this spatial resolution, especially when some of the experimental methods, like electron beams, would destroy the material."

Co-authors of the paper are Rice postdoctoral researcher Xiaolong Zou and Vincent Crespi, distinguished professor of physics, materials science and engineering, and chemistry at The Pennsylvania State University. Yakobson is Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science, a professor of chemistry and a member of the Richard E. Smalley Institute for Nanoscale Science and Technology.

A U.S. Army Research Office Multidiscipline University Research Initiative grant, the National Science Foundation and the Robert Welch Foundation supported the research. Computations were performed on the Data Analysis and Visualization Cyberinfrastructure supercomputer administered by Rice's Ken Kennedy Institute for Information Technology.

Read the abstract at

This news release can be found online at

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Yakobson Research Group:
Images for download:
Rice University theorists have discovered magnetic fields (blue) are created at grain boundaries in two-dimensional dichalcogenides. Dislocations along these boundaries, where atoms are thrown out of their regular hexagonal patterns, force electron spins into alignments that favor magnetism. (Credit: Zhuhua Zhang/Rice University)

Atomic dislocations can become magnetically charged when two-dimensional sheets of molybdenum disulfide and other dichalcogenides meet at an angle, according to calculations by theorists at Rice University. The grain boundaries force atoms out of their hexagonal patterns (left) and keep electron spins from canceling each other out, creating nanoscale magnetic fields (right, in blue) in the process. (Credit: Zhuhua Zhang/Rice University)

In a perfect sheet of molybdenum disulfide, at left, sulfur (yellow) atoms and molybdenum (blue) atoms appear in a perfect hexagonal pattern when seen from above, though the sulfur atoms float just above and below the molybdenum layer. When two sheets join at an angle, right, dislocations disrupt the hexagons. At those points, according to new research at Rice University, magnetic fields can form. The discovery may boost research into spintronics for electronics and computing. (Credit: Zhuhua Zhang/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to

David Ruth | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>