Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule flash mob

19.01.2017

Neurotransmitter transporters are some of the most popular transport proteins in research as they play a major role in the processing of signals in the brain. A joint study by TU Wien and the Medical University of Vienna has now successfully demonstrated for the first time the structural impact of membrane lipids on medically relevant serotonin transporters

The membrane of a cell is composed of a lipid bilayer. Lipids are good chemical and electrical insulators, which are ideally suited to separating the inside of the cell from the outside of the cell. But membranes also harbour a large number of proteins, some of which regulate the controlled exchange of substances across the membrane. While the majority of proteins are able to move freely within the lipid layers, they are found in groups with surprising frequency.


High PIP2 concentrations on the cell membrane (left) prohibit SERT oligomerisation or dissociation so the level of oligomerisation is fixed. The PIP2 concentration in the endoplasmic reticulum is very low (right). The SERT oligomerisation therefore strives for equilibrium.

TU Wien

The bonds between proteins may be fixed and permanent; or protein molecules may come together, split and come together again in another configuration. The research interests of the groups involved in the study, who were led by Prof. Gerhard Schütz from the Institute of Applied Physics at TU Wien and Prof. Harald Sitte from the Institute of Pharmacology at the Medical University of Vienna, concern how these interactions work, and this could shed further light on how the cell membrane and the membrane proteins embedded in it function.

Molecule tracking

Due to their size, protein molecules cannot be seen with the naked eye, which is why it is necessary to use a microscope to track them. However, the challenge lies in filtering out precisely those proteins which are of interest from the large number of other proteins in a cell.

“Together with Prof. Harald Sitte from the Medical University of Vienna, at present we are particularly interested in the serotonin transporter (SERT), a protein that is important for the uptake of the neurotransmitter serotonin in the brain. In order to be able to observe it under a microscope, it is marked with a fluorescent biomolecule, a ‘green fluorescent protein’ (GFP)’ explains Prof. Schütz. A molecular biological method is used to combine the GFP with the SERT and it then acts like a coloured balloon.

“The ‘single molecule microscopy’ method enables us to determine from the strength of the signal from the points of light observed whether the molecule in question is moving around by itself or with other molecules of the same type.”

As a biophysicist, Schütz is not only interested in the fact that the proteins move around together but also in why the two molecules stick together, in other words how the underlying interaction mechanisms work. PIP2 (Phosphatidylinositol-4,5-bisphosphate) is a central signal molecule that is predominantly found on the side of the cell membrane facing the inside of the cell. It binds perfectly to the SERT, with amazing consequences.

If only a low concentration of PIP2 is available, the oligomerisation of the SERT behaves as expected: low SERT concentrations mainly produce monomers, while high concentrations lead to the formation of oligomers. “It is not just that we are seeing a large number of oligomers, we also know that they exchange molecules with each other,” says Schütz of his research. However, if there are high levels of PIP2 available, on average oligomers that are identical in size will always be produced, regardless of the SERT concentration. “It is as though the SERT proteins were locked in a predefined arrangement.”

Exploring cluster formation

To investigate the underlying mechanisms of this amazing oligomer formation, you have to look inside the cell. One cell area – the endoplasmic reticulum – acts as the place where all membrane proteins, including SERT, are produced. This is in fact PIP2-free, meaning that SERT should have different levels of oligomerisation there, depending on the concentration of SERT. This has actually been observed too. “We assume that SERT oligomerises after it is produced in the endoplasmic reticulum, but that this process is initially reversible. It is only when the protein reaches the cell membrane that the predefined level of oligomerisation is fixed by PIP2,” says Schütz. “These observations are confirmed by specific changes to the protein structure that we inserted into the serotonin transporter,” says Sitte. “We were able to identify the position of the point mutations extremely accurately using computer models which Dr Thomas Stockner created as part of this study. The mutated SERT molecules exhibit a behaviour that makes it almost impossible for this locking to occur. And the medical relevance of our observation lies in the importance of oligomerisation for the behaviour of different psychostimulants, such as amphetamines: these can only have an effect if sufficient bonded SERT molecules are evident in the membrane.”

This study was carried out under the auspices of the Special Research Program SFB35 ‘Transmembrane Transporters in Health and Disease’ funded by the Austrian Science Fund (FWF), which mainly comprises scientists from the Medical University of Vienna. The co-author of the study and spokesperson of the SFB is the pharmacologist Harald Sitte, who, for many years, has been interested in how SERT and other transporter proteins work and how they can be modulated by psychopharmaceuticals.

Original publication:
Anderluh, A. et al. Direct PIP2 binding mediates stable oligomer formation of the serotonin transporter. Nat. Commun. 7, 14089 | DOI: 10.1038/ncomms14089 (2016)

Picture download: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2017/flashmob

Further information:
Univ.Prof. Dipl.-Ing. Dr.techn. Gerhard Schütz
TU Wien
Institute of Applied Physics
Getreidemarkt 9, 1060 Vienna
T: +43-1-58801-13480
gerhard.schuetz@tuwien.ac.at

Univ.Prof. Dr. Harald Sitte
Medical University of Vienna
Center for Physiology and Pharmacology
Institute of Pharmacology
Währingerstraße 13a, 1040 Vienna
T: +43-1-40160-31323
harald.sitte@meduniwien.ac.at

Dr. Florian Aigner | Technische Universität Wien

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>