Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Missing Planets Attest to Destructive Power of Stars' Tides

Astronomers have found hundreds of extrasolar planets in the last two decades, and new research indicates they might have found even more except for one thing – some planets have fallen into their stars and simply no longer exist.

During the last two decades, astronomers have found hundreds of planets orbiting stars outside our solar system. New research indicates they might have found even more except for one thing – some planets have fallen into their stars and simply no longer exist.

The idea that gravitational forces might pull a planet into its parent star has been predicted by computer models only in the last year or so, and this is the first evidence that such planet destruction has already occurred, said University of Washington astronomer Rory Barnes.

"When we look at the observed properties of extrasolar planets, we can see that this has already happened – some extrasolar planets have already fallen into their stars," he said.

Computer models can show where planets should line up in a particular star system, but direct observations show that some systems are missing planets close to the stars where models say they should be.

Barnes, a postdoctoral astronomy researcher with the Virtual Planet Laboratory at the UW, is a co-author of a paper describing the findings that was accepted this month for publication in Astrophysical Journal. Lead author Brian Jackson and co-author Richard Greenberg are with the Lunar and Planetary Laboratory at the University of Arizona.

The research involves planets that are close to their parent stars. Such planets can be detected relatively easily by changes in brightness as their orbits pass in front of the stars.

But because they are so close to each other, the planet and star begin pulling on each other with increasingly strong gravitational force, misshaping the star's surface with rising tides from its gaseous surface.

"Tides distort the shape of a star. The bigger the tidal distortion, the more quickly the tide will pull the planet in," Jackson said.

Most of the planets discovered outside of our solar system are gas giants like Jupiter except that they are much more massive. However, earlier this year astronomers detected an extrasolar planet called CoRoT-7 B that, while significantly larger than our planet, is more like Earth than any other extrasolar planet found so far.

However, that planet orbits only about 1.5 million miles from its star, much closer than Mercury is to our sun, a distance that puts it in the category of a planet that will fall into its star. Its surface temperature is around 2,500 degrees Fahrenheit "so it's not a pleasant environment," Barnes said, and in a short time cosmically – a billion years or so – CoRoT-7 B will be consumed.

The destruction is slow but inevitable, Jackson said.

"The orbits of these tidally evolving planets change very slowly, over timescales of tens of millions of years," Jackson said. "Eventually the planet's orbit brings it close enough to the star that the star's gravity begins tearing the planet apart.

"So either the planet will be torn apart before it ever reaches the surface of the star, or in the process of being torn apart its orbit eventually will intersect the star's atmosphere and the heat from the star will obliterate the planet."

The researchers hope the work leads to better understanding of how stars destroy planets and how that process might affect a planet's orbit, Jackson said.

The scientists also say their research will have to be updated as more extrasolar planets are discovered. NASA, which funded the research, recently launched the Kepler telescope, which is designed specifically to look for extrasolar planets that are closer in size to Earth.

Jackson hopes new observations will provide new lines of evidence to investigate how a star's tides can destroy planets.

"For example, the rotation rates of stars tend to drop, so older stars tend to spin more slowly than younger stars," he said. "However, if a star has recently consumed a planet, the addition of the planet's orbital angular momentum will cause the star to rapidly increase its spin rate. So we would like to look for stars that are spinning too fast for their age."

For more information, contact Barnes at 206-543-8979 or; or Jackson at 520-626-3154 or

The paper is available at

Vince Stricherz | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>