Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing: Electron antineutrinos; Reward: Understanding of matter-antimatter imbalance

08.03.2012
An international particle physics collaboration today announced its first results toward answering a longstanding question – how the elusive particles called neutrinos can appear to vanish as they travel through space.

The result from the Daya Bay Reactor Neutrino Experiment [link: http://dayawane.ihep.ac.cn/] describes a critical and previously unmeasured quality of neutrinos – and their antiparticles, antineutrinos – that may underlie basic properties of matter and explain why matter predominates over antimatter in the universe.

Embedded under a mountain near the China Guangdong Nuclear Power Group power plant about 55 kilometers from Hong Kong, the Daya Bay experiment used neutrinos emitted by powerful reactors to precisely measure the probability of an electron antineutrino transforming into one of the other neutrino types.

The results, detailed in a paper submitted to the journal Physical Review Letters, reveal that electron neutrinos transform into other neutrino types over a short distance and at a surprisingly high rate.

"Six percent of the electron antineutrinos emitted from the reactor transform over about two kilometers into another flavor of neutrino. Essentially they change identity," explains University of Wisconsin–Madison physics professor Karsten Heeger. [link: http://neutrino.physics.wisc.edu/heeger.php] Heeger is the U.S. manager for the Daya Bay antineutrino detectors.

Coincident with presentations by other principal investigators in the Daya Bay collaboration, Heeger is describing the results today in a talk at the Symposium on Electroweak Nuclear Physics, held at Duke University.

Neutrinos oscillate among three types or "flavors" – electron, muon, and tau – as they travel through space. Two of those oscillations were measured previously, but the transformation of electron neutrinos into other types over this distance (a so called "mixing angle" named theta one-three, written ?13) was unknown before the Daya Bay experiment.

"We expected that there would be such an oscillation, but we did not know what its probability would be," says Heeger.

The Daya Bay experiment counted the number of electron antineutrinos recorded by detectors in two experimental halls near the Daya Bay and Ling Ao reactors and calculated how many would reach the detectors in a more distant hall if there were no oscillation. The number that apparently vanished on the way – due to oscillating into other flavors – gave the value of theta one-three.

After analyzing signals of tens of thousands of electron antineutrinos emitted by the nuclear reactors, the researchers discovered that electron antineutrinos disappeared at a rate of six percent over the two kilometers between the near and far halls, a very short distance for a neutrino.

"Our precise measurement will complete the understanding of the neutrino oscillation and pave the way for the future understanding of matter-antimatter asymmetry in the universe," says Yifang Wang of China's Institute of High Energy Physics, co-spokesperson and Chinese project manager of the Daya Bay experiment.

The value is unexpectedly large and helps explain why the experiment was able to make a precise measurement so quickly, with less than two months' worth of data from just six of the planned eight detectors.

"Although we're still two detectors shy of the complete experimental design, we've had extraordinary success in detecting the number of electron antineutrinos that disappear as they travel from the reactors to the detectors two kilometers away," says Kam-Biu Luk of the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California at Berkeley. Luk is co-spokesperson of the Daya Bay Experiment and heads U.S. participation.

The researchers confirmed the finding with very high confidence, Heeger says – in statistical terms, greater than five sigma, which translates to a less than a 1 in 3.5 million chance that the result arose by random chance.

The findings fill in a major gap in understanding neutrino oscillation and will provide important guidance for future neutrino experiments, including looking for nonstandard effects outside of current theories.

Under the guidance of U.S. chief project engineer Jeff Cherwinka, an engineer at the UW–Madison Physical Sciences Laboratory (PSL), the collaboration is now assembling the last two detectors and will install them this summer to increase data collection and improve precision. The UW–Madison PSL [link: http://www.psl.wisc.edu/projects/large/dayabay] and Department of Physics have been involved in designing and building the detectors since 2006.

"What made this possible is that the detectors worked really well. We have a very strong technical engineering team with PSL, which led the onsite assembly and installation of the detectors. This allowed us to come online ahead of schedule and make these measurements so quickly," Heeger says.

Heeger will also present the findings locally in a seminar at 3:00 p.m. on Mar. 13 in 4272 Chamberlin Hall on the UW–Madison campus.

The Daya Bay collaboration is jointly led by China and the United States, with additional participants from Russia, the Czech Republic, Hong Kong, and Taiwan.

More information, including the submitted paper and photos of the experiment, are available at http://neutrino.physics.wisc.edu/dayabatheta13.

Karsten Heeger | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>