Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing: Electron antineutrinos; Reward: Understanding of matter-antimatter imbalance

08.03.2012
An international particle physics collaboration today announced its first results toward answering a longstanding question – how the elusive particles called neutrinos can appear to vanish as they travel through space.

The result from the Daya Bay Reactor Neutrino Experiment [link: http://dayawane.ihep.ac.cn/] describes a critical and previously unmeasured quality of neutrinos – and their antiparticles, antineutrinos – that may underlie basic properties of matter and explain why matter predominates over antimatter in the universe.

Embedded under a mountain near the China Guangdong Nuclear Power Group power plant about 55 kilometers from Hong Kong, the Daya Bay experiment used neutrinos emitted by powerful reactors to precisely measure the probability of an electron antineutrino transforming into one of the other neutrino types.

The results, detailed in a paper submitted to the journal Physical Review Letters, reveal that electron neutrinos transform into other neutrino types over a short distance and at a surprisingly high rate.

"Six percent of the electron antineutrinos emitted from the reactor transform over about two kilometers into another flavor of neutrino. Essentially they change identity," explains University of Wisconsin–Madison physics professor Karsten Heeger. [link: http://neutrino.physics.wisc.edu/heeger.php] Heeger is the U.S. manager for the Daya Bay antineutrino detectors.

Coincident with presentations by other principal investigators in the Daya Bay collaboration, Heeger is describing the results today in a talk at the Symposium on Electroweak Nuclear Physics, held at Duke University.

Neutrinos oscillate among three types or "flavors" – electron, muon, and tau – as they travel through space. Two of those oscillations were measured previously, but the transformation of electron neutrinos into other types over this distance (a so called "mixing angle" named theta one-three, written ?13) was unknown before the Daya Bay experiment.

"We expected that there would be such an oscillation, but we did not know what its probability would be," says Heeger.

The Daya Bay experiment counted the number of electron antineutrinos recorded by detectors in two experimental halls near the Daya Bay and Ling Ao reactors and calculated how many would reach the detectors in a more distant hall if there were no oscillation. The number that apparently vanished on the way – due to oscillating into other flavors – gave the value of theta one-three.

After analyzing signals of tens of thousands of electron antineutrinos emitted by the nuclear reactors, the researchers discovered that electron antineutrinos disappeared at a rate of six percent over the two kilometers between the near and far halls, a very short distance for a neutrino.

"Our precise measurement will complete the understanding of the neutrino oscillation and pave the way for the future understanding of matter-antimatter asymmetry in the universe," says Yifang Wang of China's Institute of High Energy Physics, co-spokesperson and Chinese project manager of the Daya Bay experiment.

The value is unexpectedly large and helps explain why the experiment was able to make a precise measurement so quickly, with less than two months' worth of data from just six of the planned eight detectors.

"Although we're still two detectors shy of the complete experimental design, we've had extraordinary success in detecting the number of electron antineutrinos that disappear as they travel from the reactors to the detectors two kilometers away," says Kam-Biu Luk of the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California at Berkeley. Luk is co-spokesperson of the Daya Bay Experiment and heads U.S. participation.

The researchers confirmed the finding with very high confidence, Heeger says – in statistical terms, greater than five sigma, which translates to a less than a 1 in 3.5 million chance that the result arose by random chance.

The findings fill in a major gap in understanding neutrino oscillation and will provide important guidance for future neutrino experiments, including looking for nonstandard effects outside of current theories.

Under the guidance of U.S. chief project engineer Jeff Cherwinka, an engineer at the UW–Madison Physical Sciences Laboratory (PSL), the collaboration is now assembling the last two detectors and will install them this summer to increase data collection and improve precision. The UW–Madison PSL [link: http://www.psl.wisc.edu/projects/large/dayabay] and Department of Physics have been involved in designing and building the detectors since 2006.

"What made this possible is that the detectors worked really well. We have a very strong technical engineering team with PSL, which led the onsite assembly and installation of the detectors. This allowed us to come online ahead of schedule and make these measurements so quickly," Heeger says.

Heeger will also present the findings locally in a seminar at 3:00 p.m. on Mar. 13 in 4272 Chamberlin Hall on the UW–Madison campus.

The Daya Bay collaboration is jointly led by China and the United States, with additional participants from Russia, the Czech Republic, Hong Kong, and Taiwan.

More information, including the submitted paper and photos of the experiment, are available at http://neutrino.physics.wisc.edu/dayabatheta13.

Karsten Heeger | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>