Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MHC's Dyar Receives NASA Grant for Mars Exploration

18.09.2009
Mount Holyoke College's associate professor of astronomy Darby Dyar has just gotten a big boost for her work: a $689,000 grant from the Mars Fundamental Research Program at NASA for a project titled "Technique Development for Laser-Induced Breakdown Spectroscopy: Calibration, Classification, and Light Element Analysis."

"I'm incredibly excited about this," said Dyar, who will share a portion of the grant with the Los Alamos National Laboratory. "Laser-induced breakdown spectroscopy (LIBS) is a great new elemental analysis technique that will be one of the instruments in the 'payload'--that is, on board--the next Mars lander, which is called Mars Science Laboratory."

The Mars Science Lab is a rover that will launch in 2011 and land on Mars in 2012 to assess whether the planet is now or ever was capable of supporting microbial life. It is part of NASA's Mars Exploration Program, a long-term project involving robotic exploration of the red planet. The rover will carry the largest, most advanced instruments for scientific studies ever sent to the Martian surface; in addition to evaluating if the planet could support life, instruments will characterize the climate and the geology of Mars.

The grant will be used to help calibrate the ChemCam instrument on the lander, said Dyar.

According to the Mars Science Lab Web site, "Looking at rocks and soils from a distance, ChemCam will fire a laser and analyze the elemental composition of vaporized materials from areas smaller than one millimeter on the surface of Martian rocks and soils. An on-board spectrograph will provide unprecedented detail about minerals and microstructures in rocks by measuring the composition of the resulting plasma--an extremely hot gas made of free-floating ions and electrons.

"ChemCam will also use the laser to clear away dust from Martian rocks and a remote camera to acquire extremely detailed images. The camera can resolve features five to ten times smaller than those visible with cameras on NASA's two Mars Exploration Rovers that began exploring the red planet in January 2004. In the event the Mars Science Laboratory rover can't reach a rock or outcrop of interest, ChemCam will have the capability to analyze it from a distance."

Dyar's grant will also provide funding to purchase a LIBS unit that will be located on the Mount Holyoke College campus; it is currently being built at Los Alamos.

Students from Mount Holyoke and the Five College Astronomy Department – part of the Five College consortium program offered by Mount Holyoke, Smith, Amherst and Hampshire Colleges, and the University of Massachusetts at Amherst – will also be involved in work related to the Mars Science Laboratory project.

For more info:

http://www.mtholyoke.edu/news/channels/22/stories/5681508

http://www.mtholyoke.edu/acad/misc/profile/mdyar.shtml

http://marsprogram.jpl.nasa.gov/msl/

Mary Jo Curtis | Newswise Science News
Further information:
http://www.mtholyoke.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>