Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mesoscopic tunnelling of magnetization: A historic milestone in twentieth-century science

09.12.2008
The tunnel effect of magnetization, a highly unusual property of the world of quantum mechanics discovered by the Magnetism Group of the Department of Fundamental Physics at the University of Barcelona (UB), led by Professor Javier Tejada (Castejón, 1948), in cooperation with groups from the City University of New York and the firm Xerox, has been acknowledged as one of the milestones in the study of spin of the twentieth century in the special collection Milestones in Spin, published by the leading scientific journal Nature.

This is the first time that a Spanish physicist has received credit in this country as the discoverer of a new physical phenomenon: the mesoscopic tunnelling of magnetization in molecular magnets (Physical Review Letters, 1996). This scientific breakthrough has now made its way into textbooks on magnetism.

It explains how the magnetic poles of small magnets, formed by millions of atoms, at very low temperatures, can change orientation due to the tunnel effect and without any energy expenditure. Now, the journal Nature has recognized this discovery as a historic milestone in the science of spin (the property of elementary particles to rotate around their axis in relation to their magnetic field).

Milestones in Spin also records the contributions of great figures in the world of physics, such as Nobel Prize winners Albert Einstein (1921); Paul A. M. Dirac (1933); Otto Stern (1943); Felix Bloch and E. M. Purcell (1952), Douglas Osheroff, Robert Richardson and David Lee (1996); Frank Wilczek, David Gross and David Politzer (2004), and Albert Fert and Peter Grünberg (2007).

The uncertainty principle governs the world of quantum physics: it is impossible to know the position and the momentum of an object at the same time. This is a property of quantum objects and does not depend on the ability to make an exact measurement. This uncertainty, at macroscopic scale, cannot be detected experimentally, and this has generated intense scientific debate in the frontiers of quantum physics and in the mesoscopic world. For the researchers, the tunnel effect is an unexpected consequence of quantum mechanics, and the magnets of mesoscopic size are the best systems for detecting quantum tunnelling phenomena.

The collection Milestones in Spin highlights 23 historic events in the study of spin, from the discovery of the first physical phenomenon in this field (the Zeeman effect, 1896) until the present day. Milestone 22, entitled «Mesoscopic tunneling of magnetization» is the quantum tunnel effect in magnetic poles, a phenomenon discovered by Javier Tejada, J. R. Friedman, M. Sarachik and Ron Ziolo and described in the article «Macroscopic measurement of resonant magnetization tunneling in high-spin molecules» (Physical Review Letters, 1996).

In this study, the scientists showed that the reorientation of the magnetic poles of mesoscopic sized magnets occurs due to quantum tunnelling, a curious property of the quantum world according to which an elementary particle can disappear and reappear outside the space in which it is confined.

In accordance with the theories of the physicist Eugene Chudnovsky on the tunnel effect, Tejada and his co-workers study the magnetism of mesoscopic magnets, and have discovered new fundamental laws of quantum phenomena in magnetism: the first experimental evidence of the tunnel effect of magnetization (1992), the resonant spin tunnelling (1996), quantum spin coherence (1999) and quantum magnetic deflagration (2005). Science, Nature, and Physics Today are some of the international journals that reported the new physical effect, discovered in 1996 by the research team at the UB and in the United States.

In the area of spin physics, the article «Field tuning of thermally activated magnetic quantum tunnelling in Mn12-Ac molecules», was the second to report evidence of the tunnel effect using an independent technique, published in the journal Europhysics Letters (1996), by the researchers Javier Tejada, Joan Manel Hernàndez and X. X. Zhang of the Department of Fundamental Physics at the UB, in conjunction with F. Luis and J. Bartolomé of the Materials Science Institute of Aragon and Ron Ziolo of the Xerox Corporation in New York.

The expectations raised by resonant spin tunnelling in the field of applied and basic physics open up new frontiers for the study of new macroscopic quantum phenomena and the testing of theories.

Winner of the Principe de Viana Prize for Culture in 2006, and recipient of an honorary doctorate from the City University of New York in 1996, Javier Tejada is a renowned expert in the field of magnetism and in the study of quantum effects in magnetism and superconductivity using microwaves and acoustic waves as high frequency. Professor of the Department of Fundamental Physics, he is the director of the UBX and the Magnetism Group at the UB, and is a member of the Spanish Royal Society of Physics, the Catalan Society of Physics, the New York Academy of Sciences and the American Physical Society.

Javier Tejada is the author of more than 280 scientific studies in leading journals such as Science, Physical Review Letters, Physical Review B, Europhysics Letters, Applied Physics Letters and Nature Materials. Tejada, who holds fifteen international patents in cooperation with firms and institutions, has been admitted as a Fellow of the American Physical Society (2000), and has received the Narcis Monturiol Medal from the Catalan government (1994), the International Award of the Xerox Foundation (1998) and the Catalan government distinction for the Promotion of University Research (2001).

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Physics and Astronomy:

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>