Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mesoscopic tunnelling of magnetization: A historic milestone in twentieth-century science

09.12.2008
The tunnel effect of magnetization, a highly unusual property of the world of quantum mechanics discovered by the Magnetism Group of the Department of Fundamental Physics at the University of Barcelona (UB), led by Professor Javier Tejada (Castejón, 1948), in cooperation with groups from the City University of New York and the firm Xerox, has been acknowledged as one of the milestones in the study of spin of the twentieth century in the special collection Milestones in Spin, published by the leading scientific journal Nature.

This is the first time that a Spanish physicist has received credit in this country as the discoverer of a new physical phenomenon: the mesoscopic tunnelling of magnetization in molecular magnets (Physical Review Letters, 1996). This scientific breakthrough has now made its way into textbooks on magnetism.

It explains how the magnetic poles of small magnets, formed by millions of atoms, at very low temperatures, can change orientation due to the tunnel effect and without any energy expenditure. Now, the journal Nature has recognized this discovery as a historic milestone in the science of spin (the property of elementary particles to rotate around their axis in relation to their magnetic field).

Milestones in Spin also records the contributions of great figures in the world of physics, such as Nobel Prize winners Albert Einstein (1921); Paul A. M. Dirac (1933); Otto Stern (1943); Felix Bloch and E. M. Purcell (1952), Douglas Osheroff, Robert Richardson and David Lee (1996); Frank Wilczek, David Gross and David Politzer (2004), and Albert Fert and Peter Grünberg (2007).

The uncertainty principle governs the world of quantum physics: it is impossible to know the position and the momentum of an object at the same time. This is a property of quantum objects and does not depend on the ability to make an exact measurement. This uncertainty, at macroscopic scale, cannot be detected experimentally, and this has generated intense scientific debate in the frontiers of quantum physics and in the mesoscopic world. For the researchers, the tunnel effect is an unexpected consequence of quantum mechanics, and the magnets of mesoscopic size are the best systems for detecting quantum tunnelling phenomena.

The collection Milestones in Spin highlights 23 historic events in the study of spin, from the discovery of the first physical phenomenon in this field (the Zeeman effect, 1896) until the present day. Milestone 22, entitled «Mesoscopic tunneling of magnetization» is the quantum tunnel effect in magnetic poles, a phenomenon discovered by Javier Tejada, J. R. Friedman, M. Sarachik and Ron Ziolo and described in the article «Macroscopic measurement of resonant magnetization tunneling in high-spin molecules» (Physical Review Letters, 1996).

In this study, the scientists showed that the reorientation of the magnetic poles of mesoscopic sized magnets occurs due to quantum tunnelling, a curious property of the quantum world according to which an elementary particle can disappear and reappear outside the space in which it is confined.

In accordance with the theories of the physicist Eugene Chudnovsky on the tunnel effect, Tejada and his co-workers study the magnetism of mesoscopic magnets, and have discovered new fundamental laws of quantum phenomena in magnetism: the first experimental evidence of the tunnel effect of magnetization (1992), the resonant spin tunnelling (1996), quantum spin coherence (1999) and quantum magnetic deflagration (2005). Science, Nature, and Physics Today are some of the international journals that reported the new physical effect, discovered in 1996 by the research team at the UB and in the United States.

In the area of spin physics, the article «Field tuning of thermally activated magnetic quantum tunnelling in Mn12-Ac molecules», was the second to report evidence of the tunnel effect using an independent technique, published in the journal Europhysics Letters (1996), by the researchers Javier Tejada, Joan Manel Hernàndez and X. X. Zhang of the Department of Fundamental Physics at the UB, in conjunction with F. Luis and J. Bartolomé of the Materials Science Institute of Aragon and Ron Ziolo of the Xerox Corporation in New York.

The expectations raised by resonant spin tunnelling in the field of applied and basic physics open up new frontiers for the study of new macroscopic quantum phenomena and the testing of theories.

Winner of the Principe de Viana Prize for Culture in 2006, and recipient of an honorary doctorate from the City University of New York in 1996, Javier Tejada is a renowned expert in the field of magnetism and in the study of quantum effects in magnetism and superconductivity using microwaves and acoustic waves as high frequency. Professor of the Department of Fundamental Physics, he is the director of the UBX and the Magnetism Group at the UB, and is a member of the Spanish Royal Society of Physics, the Catalan Society of Physics, the New York Academy of Sciences and the American Physical Society.

Javier Tejada is the author of more than 280 scientific studies in leading journals such as Science, Physical Review Letters, Physical Review B, Europhysics Letters, Applied Physics Letters and Nature Materials. Tejada, who holds fifteen international patents in cooperation with firms and institutions, has been admitted as a Fellow of the American Physical Society (2000), and has received the Narcis Monturiol Medal from the Catalan government (1994), the International Award of the Xerox Foundation (1998) and the Catalan government distinction for the Promotion of University Research (2001).

Rosa Martínez | alfa
Further information:
http://www.ub.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>