Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism Behind Capacitor’s High-Speed Energy Storage Discovered

24.02.2012
Researchers at North Carolina State University have discovered the means by which a polymer known as PVDF enables capacitors to store and release large amounts of energy quickly. Their findings could lead to much more powerful and efficient electric cars.

Capacitors are like batteries in that they store and release energy. However, capacitors use separated electrical charges, rather than chemical reactions, to store energy. The charged particles enable energy to be stored and released very quickly.

Imagine an electric vehicle that can accelerate from zero to 60 miles per hour at the same rate as a gasoline-powered sports car. There are no batteries that can power that type of acceleration because they release their energy too slowly. Capacitors, however, could be up to the job – if they contained the right materials.

NC State physicist Dr. Vivek Ranjan had previously found that capacitors which contained the polymer polyvinylidene fluoride, or PVDF, in combination with another polymer called CTFE, were able to store up to seven times more energy than those currently in use.

“We knew that this material makes an efficient capacitor, but wanted to understand the mechanism behind its storage capabilities,” Ranjan says.

In research published in Physical Review Letters, Ranjan, fellow NC State physicist Dr. Jerzy Bernholc and Dr. Marco Buongiorno-Nardelli from the University of North Texas, did computer simulations to see how the atomic structure within the polymer changed when an electric field was applied. Applying an electric field to the polymer causes atoms within it to polarize, which enables the capacitor to store and release energy quickly. They found that when an electrical field was applied to the PVDF mixture, the atoms performed a synchronized dance, flipping from a non-polar to a polar state simultaneously, and requiring a very small electrical charge to do so.

“Usually when materials change from a polar to non-polar state it’s a chain reaction – starting in one place and then moving outward,” Ranjan explains. “In terms of creating an efficient capacitor, this type of movement doesn’t work well – it requires a large amount of energy to get the atoms to switch phases, and you don’t get out much more energy than you put into the system.

“In the case of the PVDF mixture, the atoms change their state all at once, which means that you get a large amount of energy out of the system at very little cost in terms of what you need to put into it. Hopefully these findings will bring us even closer to developing capacitors that will give electric vehicles the same acceleration capabilities as gasoline engines.”

Note to editors: An abstract of the paper follows.

“Electric Field Induced Phase Transitions in Polymers: a Novel Mechanism for High Speed Energy Storage”

Authors: V. Ranjan, M. Buongiorno Nardelli and J. Bernholc, Center for High Performance Simulation and Department of Physics, North Carolina State University

Published: Online in Physical Review Letters

Abstract:
Using first-principles simulations, we identify the microscopic origin of the non-linear dielectric response and high energy density of PVDF-based polymers as a cooperative transition path that connects non-polar and polar phases of the system. This path explores a complex torsional and rotational manifold and is thermodynamically and kinetically accessible at relatively low temperatures. Furthermore, the introduction of suitable copolymers significantly alters the energy barriers between phases providing tunability of both the energy density and the critical fields.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>