Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism Behind Capacitor’s High-Speed Energy Storage Discovered

24.02.2012
Researchers at North Carolina State University have discovered the means by which a polymer known as PVDF enables capacitors to store and release large amounts of energy quickly. Their findings could lead to much more powerful and efficient electric cars.

Capacitors are like batteries in that they store and release energy. However, capacitors use separated electrical charges, rather than chemical reactions, to store energy. The charged particles enable energy to be stored and released very quickly.

Imagine an electric vehicle that can accelerate from zero to 60 miles per hour at the same rate as a gasoline-powered sports car. There are no batteries that can power that type of acceleration because they release their energy too slowly. Capacitors, however, could be up to the job – if they contained the right materials.

NC State physicist Dr. Vivek Ranjan had previously found that capacitors which contained the polymer polyvinylidene fluoride, or PVDF, in combination with another polymer called CTFE, were able to store up to seven times more energy than those currently in use.

“We knew that this material makes an efficient capacitor, but wanted to understand the mechanism behind its storage capabilities,” Ranjan says.

In research published in Physical Review Letters, Ranjan, fellow NC State physicist Dr. Jerzy Bernholc and Dr. Marco Buongiorno-Nardelli from the University of North Texas, did computer simulations to see how the atomic structure within the polymer changed when an electric field was applied. Applying an electric field to the polymer causes atoms within it to polarize, which enables the capacitor to store and release energy quickly. They found that when an electrical field was applied to the PVDF mixture, the atoms performed a synchronized dance, flipping from a non-polar to a polar state simultaneously, and requiring a very small electrical charge to do so.

“Usually when materials change from a polar to non-polar state it’s a chain reaction – starting in one place and then moving outward,” Ranjan explains. “In terms of creating an efficient capacitor, this type of movement doesn’t work well – it requires a large amount of energy to get the atoms to switch phases, and you don’t get out much more energy than you put into the system.

“In the case of the PVDF mixture, the atoms change their state all at once, which means that you get a large amount of energy out of the system at very little cost in terms of what you need to put into it. Hopefully these findings will bring us even closer to developing capacitors that will give electric vehicles the same acceleration capabilities as gasoline engines.”

Note to editors: An abstract of the paper follows.

“Electric Field Induced Phase Transitions in Polymers: a Novel Mechanism for High Speed Energy Storage”

Authors: V. Ranjan, M. Buongiorno Nardelli and J. Bernholc, Center for High Performance Simulation and Department of Physics, North Carolina State University

Published: Online in Physical Review Letters

Abstract:
Using first-principles simulations, we identify the microscopic origin of the non-linear dielectric response and high energy density of PVDF-based polymers as a cooperative transition path that connects non-polar and polar phases of the system. This path explores a complex torsional and rotational manifold and is thermodynamically and kinetically accessible at relatively low temperatures. Furthermore, the introduction of suitable copolymers significantly alters the energy barriers between phases providing tunability of both the energy density and the critical fields.

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>