Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massive galaxies formed when universe was young

25.11.2010
New findings disagree with current models

Some of the universe's most massive galaxies may have formed billions of years earlier than current scientific models predict, according to surprising new research led by Tufts University. The findings appear in the Astrophysical Journal published online Nov. 24 in advance of print publication on Dec. 10, 2010.

"We have found a relatively large number of very massive, highly luminous galaxies that existed almost 12 billion years ago when the universe was still very young, about 1.5 billion years old. These results appear to disagree with the latest predictions from models of galaxy formation and evolution," said Tufts astrophysicist Danilo Marchesini, lead author on the paper and assistant professor of physics and astronomy at the Tufts School of Arts and Sciences. "Current understanding of the physical processes responsible in forming such massive galaxies has difficulty reproducing these observations."

Collaborating with Marchesini were researchers from Yale University, Carnegie Observatories, Leiden University, Princeton University, the University of Kansas and the University of California-Santa Cruz.

The newly identified galaxies were five to ten times more massive than our own Milky Way. They were among a sample studied at redshift 3¡Üz

Redshift refers to the phenomenon of a light wave stretching and moving toward longer wavelengths (the red end of the spectrum) as the emitting object travels away from an observer (Doppler Effect). This is similar to the pitch of a siren getting lower as the siren moves away. The redshift of distant galaxies is due to the expansion of the universe. The larger the redshift, the more distant the galaxy is, or the farther back in time we are observing. The larger the redshift, the younger the universe in which the galaxy is observed.

By complementing existing data with deep images obtained through a new system of five customized near-infrared filters, the researchers were able to get a more complete view of the galaxy population at this early stage and more accurately characterize the sampled galaxies.

Massive Galaxies Ferociously Active

The researchers made another surprising discovery: More than 80 percent of these massive galaxies show very high infrared luminosities, which indicate that these galaxies are extremely active and most likely in a phase of intense growth. Massive galaxies in the local universe are instead quiescent and do not form stars at all.

The researchers note that there are two likely causes of such luminosity: New stars may be forming in dust-enshrouded bursts at rates of a few thousand solar masses per year. This would be tens to several hundreds of times greater than the rates estimated by spectral energy distribution (SED) modeling. Alternatively, the high infrared luminosity could be due to highly-obscured active galactic nuclei (AGN) ferociously accreting matter onto rapidly growing super-massive black holes at the galaxies' centers.

There might be an explanation that would at least partially reconcile observations with model-predicted densities. The redshifts of these massive galaxies, and hence their distances, were determined from the SED modeling and have not yet been confirmed spectroscopically. Redshift measurements from SED modeling are inherently less accurate than spectroscopy. Such "systemic uncertainties" in the determination of the distances of these galaxies might still allow for approximate agreement between observations and model predictions.

If half of the massive galaxies are assumed to be slightly closer, at redshift z=2.6, when the universe was a bit older (2.5 billion years old) and very dusty (with dust absorbing much of the light emitted at ultra-violet and optical wavelengths), then the disagreement between observations and model predictions becomes only marginally significant.

However, the discovery of the existence of such massive, old and very dusty galaxies at redshift z=2.6 would itself be a notable discovery. Such a galaxy population has never before been observed.

"Either way, it is clear that our understanding of how massive galaxies form is still far from satisfactory," said Marchesini.

"The existence of these galaxies so early in the history of the universe, as well as their properties, can provide very important clues on how galaxies formed and evolved shortly after the Big Bang," he added.

The National Science Foundation provided support for the research.

"The Most Massive Galaxies at 3.0 ¡ÜZ
Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate, and professional programs across the university's schools is widely encouraged.

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>