Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating the texture of magnetism

06.02.2012
Derivation of equations that describe the dynamics of complex magnetic quasi-particles may aid the design of novel electronic devices
Knowing how to control the combined magnetic properties of interacting electrons will provide the basis to develop an important tool for advancing spintronics: a technology that aims to harness these properties for computation and communication. As a crucial first step, Naoto Nagaosa from the RIKEN Advanced Science Institute, Wako, and his colleagues have derived the equations that govern the motion of these magnetic quasi-particles1.

The magnetic behavior of a material is a result of a phenomenon known as spin. This can be thought of as the rotation of electrons and is usually visualized as an arrow pointing along the rotation axis. In some crystalline solids, neighboring electron spins can interact with each other such that the arrows form vortex-like patterns (Fig. 1). This spin ‘texture’ is robust and remains intact despite outside influences; it can also move through the material crystal, even though the atoms themselves remain stationary. Because of these properties, physicists often think of such spin vortices as particles in their own right; they call them skyrmions. The work of Nagaosa, with researchers from China, the Netherlands and Korea, provides a theoretical framework that describes skyrmion dynamics.

Skyrmions, and the ability to control them, have the potential to increase the packing density of magnetic recording media; as such, skyrmion-based devices are likely to be more efficient than conventional memories. “Skyrmions can be moved with a current density as much as a million times smaller than those needed to control magnetic structures, thus far,” explains Nagaosa.

The researchers theoretically investigated skyrmion crystals—ordered arrays of many skyrmions—that are supported by thin metallic films. Nagaosa and his collaborators2 had suggested previously that skyrmion crystals are more stable in thin films than they are in thicker ‘bulk’ materials, making films more amenable to practical applications. The equations of motion derived by Nagaosa and colleagues also showed: how the electrons are influenced by skyrmions; that skyrmions can become pinned to impurities in the film; and that the skyrmion trajectory bends away from the direction of an electrical current. The researchers called this phenomenon the skyrmion Hall effect because of its similarity to the sideways force that is exerted on an electron as it moves through a conductor in a magnetic field, which was discovered by Edwin Hall in 1879.
“Next we intend to study the effect of thermal fluctuations of the skyrmion structure and the optical manipulation of skyrmions,” says Nagaosa. “These are the important issues on the road towards applications.”

The corresponding author for this highlight is based at the Theoretical Design Team, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>