Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manipulating the texture of magnetism

06.02.2012
Derivation of equations that describe the dynamics of complex magnetic quasi-particles may aid the design of novel electronic devices
Knowing how to control the combined magnetic properties of interacting electrons will provide the basis to develop an important tool for advancing spintronics: a technology that aims to harness these properties for computation and communication. As a crucial first step, Naoto Nagaosa from the RIKEN Advanced Science Institute, Wako, and his colleagues have derived the equations that govern the motion of these magnetic quasi-particles1.

The magnetic behavior of a material is a result of a phenomenon known as spin. This can be thought of as the rotation of electrons and is usually visualized as an arrow pointing along the rotation axis. In some crystalline solids, neighboring electron spins can interact with each other such that the arrows form vortex-like patterns (Fig. 1). This spin ‘texture’ is robust and remains intact despite outside influences; it can also move through the material crystal, even though the atoms themselves remain stationary. Because of these properties, physicists often think of such spin vortices as particles in their own right; they call them skyrmions. The work of Nagaosa, with researchers from China, the Netherlands and Korea, provides a theoretical framework that describes skyrmion dynamics.

Skyrmions, and the ability to control them, have the potential to increase the packing density of magnetic recording media; as such, skyrmion-based devices are likely to be more efficient than conventional memories. “Skyrmions can be moved with a current density as much as a million times smaller than those needed to control magnetic structures, thus far,” explains Nagaosa.

The researchers theoretically investigated skyrmion crystals—ordered arrays of many skyrmions—that are supported by thin metallic films. Nagaosa and his collaborators2 had suggested previously that skyrmion crystals are more stable in thin films than they are in thicker ‘bulk’ materials, making films more amenable to practical applications. The equations of motion derived by Nagaosa and colleagues also showed: how the electrons are influenced by skyrmions; that skyrmions can become pinned to impurities in the film; and that the skyrmion trajectory bends away from the direction of an electrical current. The researchers called this phenomenon the skyrmion Hall effect because of its similarity to the sideways force that is exerted on an electron as it moves through a conductor in a magnetic field, which was discovered by Edwin Hall in 1879.
“Next we intend to study the effect of thermal fluctuations of the skyrmion structure and the optical manipulation of skyrmions,” says Nagaosa. “These are the important issues on the road towards applications.”

The corresponding author for this highlight is based at the Theoretical Design Team, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>